Publications

banner

Selected Publications

 

nature materials
  • “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Francesco Meinardi, et al, Nature Photon., 11(3), 177-185, (2017). doi: 10.1038/nphoton.2017.5
nature photonics
  • “Metal-Insulator Transition in a Semiconductor Nanocrystal Network,” Benjamin L. Greenberg, et al., Sci., 5(8), eaaw1462 (2019). doi: 10.1126/sciadv.aaw1462
nature materials
  • “High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas.” Elijah Thimsen, et al., Nat. Commun., 5, 5822 (2014). doi: 10.1038/ncomms6822
cover page
  • “Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals.” Lance M. Wheeler, et al., Nat. Comun. 4, 2197, (2013). doi: 10.1038/ncomms3197
cover page
  • Hybrid solar cells from P3HT and silicon nanocrystals,” Chin-Yi Liu, et al., Nano Lett. 9(1), 449-452 (2009). doi: 10.1021/nl8034338
nanoletters
  • “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” David Jurbergs, et al., Appl. Phys. Lett. 88, 233116 (2006). doi: 10.1063/1.2210788
cover+image

Complete List

  • "Silver Nanoparticle Synthesis in Glycerol by Low-Pressure Plasma-Driven Electrolysis: The Roles of Free Electrons and Photons," Chi Xu, Subhajyoti Chaudhuri, Julian Held, Himashi P. Andaraarachchi, George C. Schatz, and Uwe R. Kortshagen, J. Phys. Chem. Lett., 14, 44, 9960-9968 (2023). doi: 10.1021/acs.jpclett.3c02342

  • "Rapid carbon-free iron ore reduction using an atmospheric pressure hydrogen microwave plasma," Sachin Kumar,  Zichang Xiong, Julian Held, Peter Bruggeman, and Uwe Kortshagen, Chemical Engineering Journal (2023). doi: 10.1016/j.cej.2023.145025

  • "Capacitively coupled nonthermal plasma synthesis of aluminum nanocrystals for enhanced yield and size control," Thomas Cameron, Bailey Klause, Himashi Andaraarachchi, Zichang Xiong, Carter Reed, Dinesh Thapa, Chi-Chin Wu, and Uwe Kortshagen, Nanotechnology, 34 395601 (2023). doi: 10.1088/1361-6528/ace193

  • "Energy and Thermal Performance Analysis of Quantum Dot Luminescent Solar Concentrators in Greenhouses," Yaling Liu, John Keil, Vivian E. Ferry, and Uwe R. Kortshagen, Adv. Sustain. Syst., 2300107 (2023). doi: 10.1002/adsu.202300107 Featured on the Back Cover

  • "Photoluminescent Si/SiO2 Core/Shell Quantum Dots Prepared by High-Pressure Water Vapor Annealing for Solar Concentrators, Light-Emitting Devices, and Bioimaging," Kristine Q. Loh, Himashi P. Andaraarachchi, Vivian E. Ferry, and Uwe R. Kortshagen, ACS Appl. Nano Mater.6, 7, 6444–6453 (2023). doi: 10.1021/acsanm.3c01130

  • "A Single-Step Bottom-up Approach for Synthesis of Highly Uniform Mie-Resonant Crystalline Semiconductor Particles at Visible Wavelengths," Mohammad Ali Eslamisaray, Parker R. Wray, Yeonjoo Lee, Gunnar M. Nelson, Ognjen Ilic, Harry A. Atwater*, and Uwe R. Kortshagen*, Nano Lett., 23, 5, 1930–1937 (2023) doi: 10.1021/acs.nanolett.2c05084

  • "Reliability of double probe measurements in nanodusty plasmas," Zichang Xiong, Julian Held, and Uwe R Kortshagen, Plasma Sources Sci. Technol., 32 035001 (2023). doi: 10.1088/1361-6595/acbcef

  • "Size-tunable silver nanoparticle synthesis in glycerol driven by a low-pressure nonthermal plasma," Chi Xu, Himashi P Andaraarachchi, Zichang Xiong, Mohammad Ali Eslamisaray, Mark J Kushner, and Uwe R Kortshagen, J. Phys. D: Appl. Phys., 55, 015201 (2022). doi: 10.1088/1361-6463/ac9ce9

  • "Pulsed power to control growth of silicon nanoparticles in low temperature flowing plasmas," Steven J. Lanham, Jordyn Polito, Zichang Xiong, Uwe R. Kortshagen, and Mark J. Kushner, J. Appl. Phys., 132(7), 073301 (2022). doi: 10.1063/5.0100380

  • "Hopping charge transport in hydrogenated amorphous silicon-germanium alloy thin films," L. Stolik, M.A. Eslamisaray, E. Nguyen, U.R. Kortshagen, and J. Kakalios, J. Appl. Phys., 131(22), 225110 (2022). doi: 10.1063/5.0077441

  • "Broadband, Angle-and Polarization-Invariant Antireflective and Absorbing Films by a Scalable Synthesis of Monodisperse Silicon Nanoparticles," Parker R. Wray, Mohammad Ali Eslamisaray, Gunnar M. Nelson, Ognjen Ilic, Uwe R. Kortshagen, and Harry A. Atwater, ACS Appl. Mater. Interfaces, 14(20), 23624-23636 (2022). doi: 10.1021/acsami.2c03263

  • "Plasma diagnostics and modeling of lithium-containing plasmas," Toshisato Ono, Shreyashi Ganguly, Qiaomiao Tu, Uwe R. Kortshagen, and Eray S. Aydil, J. Phys. D: Appl. Phys., 55(25), 254001 (2022). doi: 10.1088/1361-6463/ac5c1d

  • "Distance-dependent resonance energy transfer in alkyl-terminated Si nanocrystal solids," Zhaohan Li, Zachary L. Robinson, Paolo Elvati, Angela Violi, and Uwe R. Kortshagen, J. Chem. Phys., 156(12), 124705 (2022). doi: 10.1063/5.0079571

  • "Particle trapping, size-filtering, and focusing in the nonthermal plasma synthesis of sub-10 nanometer particles," Zichang Xiong, Steven Lanham, Eric Husmann, Gunnar Nelson, Mohammad Ali Eslamisaray, Jordan Polito, Yaling Liu, John Goree, Elijah Thimsen, Mark J. Kushner, and Uwe R. Kortshagen, J. Phys. D: Appl. Phys., 55(23), 235202 (2022). doi: 10.1088/1361-6463/ac57de

  • "Band Gap Tuning of Films of Undoped ZnO Nanocrystals by Removal of Surface Groups," Chengjian Zhang, Qiaomiao Tu, Lorraine F. Francis, and Uwe R. Kortshagen, Nanomaterials, 12(3), 565 (2022). doi: 10.3390/nano12030565

  • "Plasma-Synthesized Nitrogen-Doped Titanium Dioxide Nanoparticles With Tunable Visible Light Absorption and Photocatalytic Activity," Chad A. Beaudette, Qiaomiao Tu, Mohammad Ali Eslamisaray, Uwe R. Kortshagen, ASME Open J. Engineering, 1 (2022). doi: 10.1115/1.4053338

  • "Observation of suppressed diffusion and propagon thermal conductivity of hydrogenated amorphous silicon films," Yingying Zhang, Mohammad Ali Eslamisaray, Tianli Feng, Uwe Kortshagen, and Xiaojia Wang, Nanoscale Adv., 4(1), 87-94 (2022). doi: 10.1039/D1NA00557J

  • "Water-Soluble Luminescent Silicon Nanocrystals by Plasma-Induced Acrylic Acid Grafting and PEGylation," Zhaohan Li, Advitiya Mahajan, Himashi P. Andaraarachchi, Yeonjoo Lee, and Uwe R. Kortshagen, ACS Appl. Bio Mater.,  5(1), 105-112 (2021). doi: 10.1021/acsabm.1c00885

  • "Bilayer Luminescent Solar Concentrators with Enhanced Absorption and Efficiency for Agrivoltaic Applications," John Keil, Yaling Liu, Uwe Kortshagen, and Vivian E. Ferry, ACS Appl. Energy Mater., 4(12), 14102-14110 (2021). doi: 10.1021/acsaem.1c02860

  • "Nonthermal plasma synthesized silicon-silicon nitride core–shell nanocrystals with enhanced photoluminescence," Katharine I. Hunter, Himashi P. Andaraarachchi, and Uwe R. Kortshagen, J. Pys. D: Appl. Phys., 54(50), 504005 doi: 10.1088/1361-6463/ac2695

  • "Material-dependent submicrometer particle trapping in capacitively-coupled plasma sheaths in an intermediate collision regime.," Toshisato Ono, Uwe R. Korsthagen, and Christopher J. Hogan, Jr., Plasma Sources Sci. Technol., 30(9), 095014 (2021). doi: 10.1088/1361-6595/ac1df1
  • "Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles," Chad A. Beaudette, Himashi P. Andaraarachchi, Chi-Chin Wu, and Uwe R. Kortshagen, Nanotechnology, 32(39), 395601 (2021). doi: 10.1088/1361-6528/ac0cb3

  • "Evaluating Tandem Luminscent Solar Concentrator Performance Based on Luminophore Selection," John Keil, Yaling Liu, Vivian E. Ferry, and Uwe R. Kortshagen, In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)  1680-1684. IEEE. (2021). doi: 10.1109/PVSC43889.2021.9518707

  • "Plasma-driven solution electrolysis,"Peter J. Bruggeman, Renee R. Frontiera, Uwe R. Kortshagen, Mark J. Kushner, Suljo Linic, George C. Schatz, Himashi Andaraarachchi, Stephen Exarhos, Leighton O. Jones, Chelsea M. Mueller, Christopher C. Rich, Chi Xu, Yuanfu Yue, and Yi Zhang, J. Appl. Phys., 129(20), 200902 (2021). doi: 10.1063/5.0044261

  • "Predicting plasma conditions necessary for synthesis of γ-Al2O3 nanocrystals," Austin J. Cendejas, He SUn, Sophia E. Hayes, Uwe Kortshagen, and Elijah Thimsen, Nanoscale, 13(26), 11387-11395 (2021). doi: 10.1039/D1NR02488D

  • “Aluminum Oxide Nanoparticle Films Deposited from a Nonthermal Plasma: Synthesis, Characterization, and Crystallization,” Zhaohan Li, Parker R. Wray, Magel P. Su, Qiaomiao Tu, Himashi P. Andaraarachchi, Yong Jin Jeong, Harry A. Atwater, and Uwe R. Kortshagen, ACS Omega, 5(38), 24754–24761 (2020). doi; 10.1021/acsomega.0c03353

  • “Bright Silicon Nanocrystals from a Liquid Precursor: Quasi-Direct Recombination with High Quantum Yield,” Todd A. Pringle, Katharine I. Hunter, Alexandra Brumberg, Kenneth J. Anderson, Jeffrey A. Fagan, Salim A. Thomas, Reed J. Petersen, Mahmud Sefannaser, Yulun Han, Samuel L. Brown, Dmitri S. Kilin,
    Richard D. Schaller, Uwe R. Kortshagen, Philip Raymond Boudjouk, and Erik K. Hobbie, ACS Nano, 14(4), 3858–3867 (2020).doi: 10.1021/acsnano.9b09614

  • “Confined yet Free to Go,” Uwe Kortshagen, Nat. Mater., 19(3), 260–261 (2020). doi: 10.1038/s41563-019-0595-x

  • “Ion Attachment Rates and Collection Forces on Dust Particles in a Plasma Sheath with Finite Ion Inertia and Mobility,” Toshisato Ono, Uwe R. Kortshagen, and Christopher J. Hogan, Jr., Phys. Rev. E, 102(6), 063212 (2020). doi:10.1103/PhysRevE.102.0632125.

  • “Nanocrystal‐based Inorganic Nanocomposites: A New Paradigm for Plasma‐produced Optoelectronic Thin Films,” Chad A. Beaudette, Xiaojia Wang, Uwe R. Kortshagen, Plasma Processes and Polym. 17(5), 2000002 (2020). Featured on the cover. doi: 10.1002/ppap.202000002

  • “Nonthermal Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Molybdenum Disulfide,” Chad A. Beaudette, Jacob T. Held, K. Andre Mkhoyan, and Uwe R. Kortshagen, ACS Omega, 5(34), 21853–21861 (2020). doi: 10.1021/acsomega.0c02947

  • “Plasmonic Nanocomposites of Zinc Oxide and Titanium Nitride,” Chad A. Beaudette, Jacob T. Held, Benjamin L. Greenberg, Phong H. Nguyen, Nolan M. Concannon, Russell J. Holmes, K. Andre Mkhoyan, Eray S. Aydil, and Uwe R. Kortshagen, J. Vac. Sci. Tech. A, 38(4), 042404 (2020). doi: 10.1116/1.5142858

  • “Poly(Methyl Methacrylate) Films with High Concentrations of Silicon Quantum Dots for Visibly Transparent Luminescent Solar Concentrators,” Samantha K.E. Hill, Ryan Connell, Jacob Held, Colin Peterson, Lorraine Francis, Marc A. Hillmyer, Vivian E. Ferry, and Uwe Kortshagen, ACS Appl. Mater. Interfaces, 12(4), 4572–4578 (2020). doi: 10.1021/acsami.9b22903

  • “Probing Dopant Locations in Silicon Nanocrystals via High Energy X-Ray Diffraction and Reverse Monte Carlo Simulation,” Katharine I. Hunter, Nicholas Bedford, Katelyn Schramke, and Uwe R. Kortshagen, Nano Lett., 20(2), 852–859 (2020). doi: 10.1021/acs.nanolett.9b03025

  • "Size and Structural Characterization of Si Nanocrystal Aggregates from a Low Pressure Nonthermal Plasma Reactor,” Xiaoshuang Chen, Takafumi Seto, Uwe R. Kortshagen, Christopher J. Hogan Jr., Powder Technol., 373, 164–173 (2020). doi: 10.1016/j.powtec.2020.06.026

  • “Thermal Transport in ZnO Nanocrystal Networks Synthesized by Nonthermal Plasma,” Xuewang Wu, Benjamin L. Greenberg, Yingying Zhang, Jacob T. Held, Dingbin Huang, Javier G. Barriocanal, K. Andre Mkhoyan, Eray S> Aydil, Uwe Kortshagen, and Xiaojia Wang, Phys. Rev. Materials, 4, 086001 (2020). doi: 10.1103/PhysRevMaterials.4.086001

  • “Aerosol-Phase Synthesis and Processing of Luminescent Silicon Nanocrystals,” Zhaohan Li and Uwe R. Kortshagen, Chem. Mater., 31(20), 8451–8458 (2019). doi: 10.1021/acs.chemmater.9b02743

  • “Bacterial Toxicity of Germanium Nanocrystals Induced by Doping with Boron and Phosphorus,” Bo Zhi, Yueke Yang, Natalie V. Hudson-Smith, Uwe R. Kortshagen, and Christy L. Haynes, ACS Appl. Nano Mater., 2(8), 4744–4755 (2019). doi: 10.1021/acsanm.9b00525

  • “Decomposition of Core-Loss EEL Edges into a Linear Combination of Refined ‘Pure’ Spectra,” Jacob T. Held, Katharine Hunter, Uwe R. Kortshagen, and K. Andre Mkhoyan, Microsc. Microanal., 25(S2), 656–657 (2019). doi: 10.1017/S143192761900401X

  • “Metal-Insulator Transition in a Semiconductor Nanocrystal Network,” Benjamin L. Greenberg, Zachary L. Robinson, Yilikal Ayino, Jacob T. Held, Timothy A. Peterson, K. Andre Mkhoyan, Vlad S. Pribiag, Eray S. Aydil, and Uwe R. Kortshagen, Sci., 5(8), eaaw1462 (2019). doi: 10.1126/sciadv.aaw1462

  • “Synthesis of PEG-Grafted Boron Doped Si Nanocrystals,” Jesse R. Greenhagen, Himashi P. Andaraarachchi, Zhaohan Li, and Uwe R. Kortshagen, J. Chem. Phys., 151(21), 211103 (2019). doi: 10.1063/1.5128608

  • High temperature thermoelectric properties of laser sintered thin films of phosphorous-doped silicon-germanium nanoparticles,” Kai Xie, Kelsey Mork, Uwe Kortshagen, and Mool C. Gupta, AIP Adv., 9, 015227 (2019). doi: 10.1063/1.5085016

  • “Determination of Nanoparticle Collision Cross Section Distribution Functions in Low Pressure Plasma Synthesis Reactors via Ion Mobility Spectrometry,” Xiaoshuang Chen, Takafumi Seto, Uwe R. Kortshagen, and Christopher J. Hogan, Nano Futures 3, 015002 (2019). doi: 10.1088/2399-1984/aaff97

  • Silicon Quantum Dot–Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators,” Samantha K.E. Hill, Ryan Connell, Colin Peterson, Jon Hollinger, Marc A Hillmyer, Uwe R Kortshagen, and Vivian E Ferry, ACS Photonics, 6(1), 170-180 (2019). doi: 10.1021/acsphotonics.8b01346

  • “Toxicity Evaluation of Boron- and Phosphorus-Doped Silicon Nanocrystals toward Shewanella oneidensis MR-1,” Bo Zhi, Sadhana Mishra, Natalie V. Hudson-Smith, Uwe R. Kortshagen, and Christy L. Haynes, ACS Appl. Nano Mater., 1(9), 4884-4893 (2018). doi: 10.1021/acsanm.8b01053

  • “Variable range hopping conduction in ZnO nanocrystal thin films” Brian T. Benton, Benjamin L. Greenberg, Eray Aydil, Uwe R. Kortshagen, S.A. Campbell, Nanotechnology 29, 415202 (2018). doi: 10.1088/1361-6528/aad6ce

  • “Comparative Toxicity Assessment of Novel Si Quantum Dots and their Traditional Cd-based Counterparts using Bacteria Models Shewanella oneidensis and Bacillus subtilis.” Sunipa Pramanik, Samantha K.E. Hill, Bo Zhi, Natalie V. Hudson-Smith, Jeslin J. Wu, Jacob N. White, Eileen A. McIntire, V.S> Santosh K. Kondeti, Amani L. Lee, Peter J. Bruggeman, Uwe R. Kortshagen, and Christy L. Haynes, Environ. Sci.: Nano, 5(8), 1890-1901, (2018). doi: 10.1039/C8EN00332G

  • “Nonthermal Plasma Synthesis of Titanium Nitride Nanocrystals with Plasmon Resonances at Near-Infrared Wavelengths Relevant to Photothermal Therapy.” Katelyn S. Schramke, Yunxiang Qin, Jacob T. Held, Andre K. Mkhoyan, and Uwe R. Kortshagen, ACS Appl. Nano Mater., 1(6), 2869–2876 (2018). doi: 10.1021/acsanm.8b00505

  • “Measuring Dopant-Modulated Vibrational Energy Transfer over the Surface of Silicon Nanoparticles by 2D-IR Spectroscopy.” Ivan C. Spector, Katelyn S. Schramke, Uwe R. Kortshagen, and Aaron M. Massari, J. Phys. Chem. C, 122(15), 8693-8698 (2018). doi: 10.1021/acs.jpcc.8b02626

  • “Tuning Nanocrystal Surface Depletion by Controlling Dopant Distribution as a Route Toward Enhanced Film Conductivity.” Corey M. Staller, Zachary L. Robinson, Ankit Agrawal, Stephen L. GIbbs, Benjamin L. Greenberg, Sebastien D. Lounis, Uwe R. Kortshagen, and Delia J. Milliron, Nano Lett., 18(5), 2870-2878 (2018). doi: 10.1021/acs.nanolett.7b05484

  • “Thermodynamic Driving Force in the Spontaneous Formation of Inorganic Nanoparticle Solutions.” Lance M. Wheeler, Nicolaas J. Kramer, and Uwe R. Kortshagen, Nano Lett., 18(3), 1888-1895 (2018). doi: 10.1021/acs.nanolett.7b05187

  • “Quasi continuous wave laser sintering of Si-Ge nanoparticles for thermoelectrics.” Kai Xie, Kelsey Mork, Jacob T. Held, K. Andre Mkhoyan, Uwe Kortshagen, and Mool C. Gupta, J. Appl. Phys., 123(9), 094301 (2018). doi: 10.1063/1.5018337

  • “Obtaining Structural Parameters from STEM–EDX Maps of Core/Shell Nanocrystals for Optoelectronics.” Jacob T. Held, Katharine I. Hunter, Nabeel Dahod, Benjamin Greenberg, Danielle Reifsnyder Hickey, William A. Tisdale, Uwe Kortshagen, and K. Andre Mkhoyan, ACS Appl. Nano Mater., 1(2), 989-996 (2018). doi: 10.1021/acsanm.7b00398

  • “Near-Infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering,” Yunxiang Qin, Xiang-Tian Kong, Zhiming Wang, Alexander O. Govorov, and Uwe R. Kortsahgen, ACS Photonics, 4(11), 2881-2890 (2017). doi: 10.1021/acsphotonics.7b00866

  • “Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals,” Benjamin T. Diroll, Katelyn S. Schramke, Peijun Guo, Uwe R. Kortshagen, and Richard D. Schaller, Nano Lett. (2017), 17(10), 6409-6414. doi: 10.1021/acs.nanolett.7b03393

  • “The 2017 Plasma Roadmap: Low temperature plasma science and technology,” I. Adamovich, Scott D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. Mededovic Thagard, H.R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z. Lj Petrovic, L.C. Pitchford, Y.K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. Van De Sanden, A. Vardelle, J. Phys. D: Appl. Phys, 50(32), 323001 (2017). doi: 10.1088/1361-6463/aa76f5

  • “ZnO Nanocrystal Networks Near the Insulator-Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light,” Benjamin L. Greenberg, Zachary L. Robinson, K.V. Reich, CLaudia Gorynski, Bryan N. Voigt, Lorraine F. Francis, B.I. Shklovskii, Eray S. Aydil, and Uwe R. Kortshagen, Nano Lett., 17(8), 4634-4642 (2017). doi: 10.1021/acs.nanolett.7b01078

  • “Doped Silicon Nanocrystal Plasmonics,” Hui Zhang, Runmin Zhang, Katelyn S. Schramke, Micholas M. Bedford, Katharine Hunter, Uwe R. Kortshagen, and Peter Nordlander, ACS Photonics, 4(4), 963-970 (2017). doi: 10.1021/acsphotonics.7b00026

  • “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Francesco Meinardi, Samantha Ehrenberg, Lorena Dhamo, Francesco Carulli, Michele Mauri, Francesco Bruni, Roberto Simonutti, Uwe Kortshagen, and Sergio Brovelli, Nature Photon., 11(3), 177-185, (2017). doi: 10.1038/nphoton.2017.5

  • “Abrupt Size Partitioning of Multimodal Photoluminescence Relaxation in Monodisperse Silicon Nanocrystals,” Samuel L. Brown, Joseph B. Miller, Rebecca J. Anthony, Uwe R. Kortshagen, Andrei Kryjevski, and Erik K. Hobbie, ACS Nano, 11(2), 1597-1603, (2017). doi: 10.1021/acsnano.6b07285

  • “Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals,” Katharine I. Hunter, Jacob T. Held, K. Andre Mkhoyan, and Uwe R. Kortshagen, ACS Appl. Mater. Interfaces, 9(9), 8263-8270, (2017). doi: 10.1021/acsami.6b16170

  • "Elemental Distribution Analysis of Core/Shell Nanocrystals with STEM/EDX," Jacob T. Held, Katharine Hunter, Uwe R. Kortshagen, and K. Andre Mkhoyan, Microsc. Microanal., 23(S1), 1904-1905 (2017). doi: 10.1017/S1431927617010182

  • “Luminescent Thermometers: A New Generation of Primary Luminescent Thermometers Based on Silicon Nanoparticles and Operating in Different Media ,” Alexandre M.P. Botas, Carlos D.S. Brites, Jeslin Wu, Uwe Kortshagen, Rui N. Pereira, Luís D. Carlos, Rute A.S. Fereira, Part. Part. Syst. Charact., 33(10), 740-748, (2016). doi: 10.1002/ppsc.201600198

  • “Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications,” Uwe R. Kortshagne, R. Mohan Sankaran, Rui N. Pereira, Steven L. Girshick, Jeslin J. Wu, and Eray S. Aydil, Chem. Rev., 116(18), 11061-11127, (2016). doi: 10.1021/acs.chemrev.6b00039

  • “Enhancing Silicon Nanocrystal Photoluminescence through Temperature and Microstructure,” Samuel L. Brown, Dayton J. Vogel, Joseph B. Miller, Talgat M. Inerbaev, Rebecca J. Anthony, Uwe R. Kortshagen, Dmitri Sl. Kilin, and Erik K. Hobbie, J. Phys. Chem. C, 120(33), 18909-18916, (2016). doi: 10.1021/acs.jpcc.6b05837

  • “Influence of the surface termination on the light emission of crystalline silicon nanoparticles,” Alexandre M.P. Botas, Rebecca J. Anthony, Jesli Wu, David J. Rowe, Nuno J.O.Silva, Uwe Kortshagen, Rui N. Pereira, and Rute A.S. Ferreira, Nanotechnology, 27(32), 325703, (2016). doi: 10.1088/0957-4484/27/32/325703

  • “Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals,” N. Bilik, B.L. Greenberg, J. Yang, E.S. Aydil, U.R. Kortshagen, J. Appl. Phys., 119(24), 243302, (2016). doi: 10.1063/1.4954323

  • “Laser light scattering from silicon particles generated in an argon diluted silane plasma,” Y. Qin, N. Bilik, U.R. Kortshagen, E.S. Aydil, J. Phys. D: Appl. Phys., 49(8), 085203, (2016).doi: 10.1088/0022-3727/49/8/085203

  • “Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment,” Jeslin J. Wu, Vighneswara Siva Santosh Kumar Kondeti, Peter J. Bruggeman, and Uwe R. Kortshagen, J. Phys. D: Appl. Phys., 49(8), 08LT02, (2016). doi: 10.1088/0022-3727/49/8/08LT02

  • “Metal-insulator transition in films of doped semiconductor nanocrystals,” Ting Chen, K.V. Reich, Nicolaas J. Kramer, Han Fu, Uwe R. Kortshagen, and B.I. Shklovskii, Nature Mater., 15(3), 299-303, (2016). doi: 10.1038/nmat4486

  • “Controlled synthesis of germanium nanoparticles by nonthermal plasmas,” Amir Mohammad Ahadi, Katharine I. Hunter, Nicolaas J. Kramer, Thomas Strunskus, Holger Kersten, Franz Faupel, and Uwe R. Kortshagen, Appl. Phys. Lett., 108(9), 093105, (2016). doi: 10.1063/1.4942970

  • “Broadband Absorbing Exciton-Plasmon Metafluids with Narrow Transparency Windows,” Jihua Yang, Nicolaas J. Kramer, Katelyn S. Schramke, Lance M. Wheeler, Lucas V. Besteiro, Christopher J. Hogan Jr., Alexander O. Govorov, and Uwe R. Kortshagen, Nano Lett., 16(2), 1472-1477, (2016). doi: 10.1021/acs.nanolett.5b05142

  • “Generation of hot carrier population in colloidal silicon quantum dots for high-efficiency photovoltaics”, Pengfei Zhang, Yu Feng, Xioaming Wen, Wenkai Cao, Rebecca Anthony, Uwe Kortshagen, Gavin Conibeer, Shujuan Huang, Sol. Energy Mater., 145, 391-396, (2016). doi: 10.1016/j.solmat.2015.11.002

  • “Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs,” Kortshagen, U., Plasma Chem. Plasma Process., 36 (1), 73-84, (2016). doi: 10.1007/s11090-015-9663-4

  • "Quantification of Elemental Distribution in Spherical Core-Shell Nanoparticles Measured by STEM-EDX," Jacob T. Held, Katharine Hunter, Uwe R. Kortshagen,a nd K. Andre Mkhoyan, Microsc. Microanal., 22(S3), 128-129 (2016). doi: 10.1017/S1431927616001495

  • “Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement”, Benjamin L. Greenberg, Shreyashi Ganguly, Jacob T. Held, Nicolaas J. Kramer, K. Andre Mkhoyan, Eray S. Aydil, and Uwe R. Kortshagen, Nano Lett., 15(12), 8162-8169, (2015). doi: 10.1021/acs.nanolett.5b03600

  • “Surface Structure and Silicon Nanocrystal Photoluminescence: The Role of Hypervalent Silyl Groups”, Yinan Shu, Uwe R. Korsthagen, Benjamin G. Levine, and Rebecca J. Anthony, J. Phys. Chem. C, 119(47), 26683-26691, (2015). doi: 10.1021/acs.jpcc.5b08578

  • “Photostability of thermally-hydrosilylated silicon quantum dots”, Jeslin J. Wu and Uwe R. Kortshagen, RSC Adv., 5(126), 103822-103828, (2015) doi: 10.1039/C5RA22827A

  • “Size‐dependent evolution of phonon confinement in colloidal Si nanoparticles”, Pengfei Zhang, Yu Feng, Rebecca Anthony, Uwe Kortshagen, Gavin Conibeer, Shujuan Huang, J. Raman Spectrosc., 46(11), 1110-1116, (2015). doi: 10.1002/jrs.4727

  • “Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates”, Joseph B. Miller, Naveen Dandu, Kirill A. Velizhanin, Rebecca J. Anthony, Uwe R. Kortshagen, Daniel M. Kroll, Svetlana Kilina, and Erik K. Hobbie, ACS Nano, 9(10), 9772-9782, (2015). doi: 10.1021/acsnano.5b02676

  • “Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus”, Nicolaas J. Kramer, Katelyn S. Schrramke, and Uwe R. Kortshagen, Nano Lett., 15(8), 5597-5603, (2015). doi: 10.1021/acs.nanolett.5b02287

  • “Special issue on plasma synthesis of nanoparticles”, R. Mohan Sankaran and Uwe Kortshagen, J. Phys. D: Appl. Phys., 48(31), 310301, (2015). doi: 10.1088/0022-3727/48/31/310301

  • “Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur”, Elijah Thimsen, Uwe R. Kortshagen, and Eray S. Aydil, J. Phys. D: Appl. Phys., 48(31), 314004, (2015). doi: 10.1088/0022-3727/48/31/314004

  • “Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals”, Xiaming Wen, Pengfei Zhang, Trevor A. Smith, Rebecca J. Anthony, Uwe R. Kortshagen, Pyng Yu, Yu Feng, Santosh Shrestha, Gavin Coniber, and Shujuan Huang, Sci. Rep., 5, 12469, (2015). doi: 10.1038/srep12469

  • “Accurate determination of the size distribution of Si nanocrystals from PL spectra”, Xuguang Jia, Pengfei Zhang, Ziyun LIn, Rebecca Anthony, Uwe Kortshagen, Shujuan Huang, Binesh Puthen-Veettil, Gavin Conibeer, and Ivan Perez-Wurfl, RSC Adv., 5(68), 55119-55125, (2015). doi: 10.1039/C5RA02805A

  • “Requirements for plasma synthesis of nanocrystals at atmospheric pressures”, N.J. Kramer, E.S. Aydil, and U.R. Kortshagen, J. Phys. D: Appl. Phys., 48(3), 035205, (2015). doi: 10.1088/0022-3727/48/3/035205

  • “Langmuir probe measurements of electron energy probability functions in dusty plasmas”, N. Bilik, R. Anthony, B. A. Merritt, E.S. Aydil, U.R. Kortshagen, J. Phys. D: Appl. Phys., 48(10), 105204, (2015). doi: 10.1088/0022-3727/48/10/105204

  • “Influence of Size Purification and Self-Assembly on the Photoluminescence of Silicon Nanocrystal Ensembles.” Joseph Miller, Austin Van Sickle, Rebecca Anthony, Uwe Kortshagen, Daniel Kroll, and Erik Hobbie, ECS Trans., 3, 61(5), 199-204 (2014). doi: 10.1149/06105.0199ecst

  • “High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas.” Elijah Thimsen, Melissa Johnson, Xin Zhang, Andrew J. Wagner, K. Andre Mkhoyan, Uwe R. Kortshagen, and Eray S. Aydil, Nat. Commun., 5, 5822 (2014). doi: 10.1038/ncomms6822

  • “UV and air stability of high-efficiency photoluminescent silicon nanocrystals.” Jihua Yang, Richard Liptak, David Rowe, Jeslin Wu, James Casey, David Witker, Stephen A. Campbell, Uwe Kortshagen, Appl. Surf. Sci., 323, 54-58 (2014). doi: 10.1016/j.apsusc.2014.08.027

  • “Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer.” Daniel C. Hannah, Jihua Yang, Nicolaas J. Kramer, George C. Schatz, Uwe R. Kortshagen, and Richard D. Schaller, ACS Photonics, 1(10), 960-967 (2014). doi: 10.1021/ph500145p

  • “Quantum confinement in mixed phase silicon thin films grown by co-deposition plasma processing.” J.D. Fields, S. McMurray, L.R. Wienkes, J. Trask, C. Anderson, P.L. Miller, B.J. Simonds, J. Kakalios, U. Kortshagen, M.T. Lusk, R.T. Collins, and P.C. Taylor, Sol. Energy Mater., 129, 7-12 (2014). doi: 10.1016/j.solmat.2013.10.028

  • "Strength and Plasticity of H- and Oxide- Terminated Cubic Si Nanocrystals," Andrew J. Wagner, Eric Hintsala, Uwe Kortshagen, William Gerberich, and K.A. Mkhoyan, Microsc. Microanal., 20(S3), 1460-1461 (2014). doi: 10.1017/S1431927614009039

  • “Silicon Nanocrystals at Elevated Temperatures: Retention of Photoluminescence and Diamond Silicon to β-Silicon Carbide Phase Transition.” Clare E. Rowland, Daniel C. Hannah, Arnaud Demortière, Jihua Yang, Russell E. Cook, Vitali B. Prakapenka, Uwe Kortshagen, and Richard D. Schaller, ACS Nano 8(9), 9219-9223 (2014). doi: 10.1021/nn5029967

  • “Carrier Transport in Films of Alkyl-Ligand-Terminated Silicon Nanocrystals.” Ting Chen, Brian Skinner, Wei Xie, B.I. Shklovskii, and Uwe R. Kortshagen, J. Phys. Chem. C, 118(34), 19580-19588 (2014). doi: 10.1021/jp5051723

  • “Plasma synthesis of stoichiometric Cu2S nanocrystals stabilized by oleylamine” Elijah Thimsen, Uwe R. Kortshagen, and Eray S. Aydil, Chem. Commun., 50(61), 8346-8349 (2014).doi: 10.1039/C4CC00998C

  • “Controlled Doping of Silicon Nanocrystals Investigated by Solution-Processed Field Effect Transistors.” Ryan Gresback, Nicolaas J. Kramer, Yi Ding, Ting Chen, Uwe R. Kortshagen, and Tomohiro Nozaki, ACS Nano, 8(6), 5650-5656 (2014). doi: 10.1021/nn500182b

  • “High Quantum Yield Dual Emission from Gas-Phase Grown Crystalline Si Nanoparticles.” A.M.P. Botas, R.A.S. Ferreira, R.N. Pereira, R.J. Anthony, T. Moura, D.J. Rowe, and U. Kortshagen, J. Phys. Chem. C, 118(19), 10375-10383 (2014). doi: 10.1021/jp5000683

  • “Highly Luminescent ZnO Quantum Dots Made in a Nonthermal Plasma.” Patrick Felbier, Jihua Yang, Jens Theis, Richard William Liptak, Andrew Wagner, Axel Lorke, Gerd Bacher, Uwe Kortshagen, Adv. Funct. Mater., 24(14), 1988-1993 (2014). doi: 10.1002/adfm.201303449

  • “Plasma-induced crystallization of silicon nanoparticles,” N. J. Kramer, R. J. Anthony, M. Mamunuru, E. S. Aydil, and U. R. Kortshagen, J. Phys. D: Appl. Phys., 47, 075202 (2014). doi: 10.1088/0022-3727/47/7/075202

  • “Boron- and phosphorus-doped silicon germanium alloy nanocrystals-Nonthermal plasma synthesis and gas-phase thin film deposition.” David J. Rowe and Uwe R. Kortshagen, APL Mater., 2(2), 022104 (2014). doi: 10.1063/1.4865158

  • “Phase separation and the 'coffee-ring' effect in polymer-nanocrystal mixtures.” Joseph B. Miller, Austin C. P. Usselman, Rebecca J. Anthony, Uwe R. Kortshagen,aAlexander J. Wager, Alan R. Denton, and Erik K. Hobbie, Soft Matter, 10(11), 1665-1675 (2014). doi: 10.1039/C3SM52807C

  • “Propagating Nanocavity-Enhanced Rapid Crystallization of Silicon Thin Films”, Andrew J. Wagner, Curtis M. Anderson, Jason N. Trask, Lin Cui, Alexander Chov, K. Andre Mkhoyan, and Uwe R. Kortshagen, Nano Lett., 13(11), 5735-5739, (2013). doi: 10.1021/nl4035913

  • “Tunable Band Gap Emission and Surface Passivation of Germanium Nanocrystals Synthesized in the Gas Phase”, Lance M. Wheeler, Laszlo M. Levij, and Uwe R. Kortshagen, J. Phys. Chem. Lett., 4(20), 3392-3396, (2013). doi: 10.1021/jz401576b

  • "The Contribution of Back Stress to Strength in Nanomaterials," A.J. Wagner, E.D. Hintsala, U.R. Kortshagen, W.W. Gerberich, and K.A. Mkhoyan, Microsc. Microanal., 19(S2), 522-523 (2013). doi: 10.1017/S1431927613004601

  • "Analytical STEM Study of P-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance," J.S. Jeong, D.J. Rowe, U.R. Kortshagen, and K.A. Mkhoyan, Microsc. Microanal., 19(S2), 1508-1509 (2013). doi: 10.1017/S1431927613009537

  • “Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals.” Lance M. Wheeler, Nathan R. Neale, Ting Chen, and Uwe R. Kortshagen, Nat. Comun. 4, 2197, (2013). doi: 10.1038/ncomms3197

  • “Temperature Dependent Photoluminescence of Size-Purified Silicon Nanocrystals.” Austin R. Van Sickle, Joseph B. Miller, Christopher Moore, Rebecca J. Anthony, Uwe R. Kortshagen, and Erik K. Hobbie, ACS Appl. Mater. Interfaces, 5(10), 4233-4238, (2013). doi: 10.1021/am400411a

  • “Phosphorus-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance,” David J. Rowe, Jong Seok Jeong, K. Andre Mkhoyan, and Uwe R. Kortshagen, Nano Lett., 13(3), 1317 (2013). doi: 10.1021/nl4001184

  • “Effects of Water Adsorption and Surface Oxidation on the Electrical Conductivity of Silicon Nanocrystal Films.” Neema Rastgar, David J. Rowe, Rebecca J. Anthony, Brian A. Merritt, Uwe R. Kortshagen, and Eray S. Aydil, J. Phys. Chem. C117 (8), 4211–4218 (2013) doi: 10.1021/jp308279m

  • “Environmental photostability of SF6-etched silicon nanocrystals.” R.W. Liptak, J. Yang, N.J. Kramer, U. Kortshagen, and S.A. Campbell, Nanotechnology, 23(39),  395205 (2012). doi: 10.1088/0957-4484/23/39/395205

  • “Freestanding silicon nanocrystals with extremely low defect content.” R.N. Pereira, D.J. Rowe, R.J. Anthony, and U. Kortshagen, Phys. Rev. B, 86(8), 085449 (2012). doi: 10.1103/PhysRevB.86.085449

  • “Ensemble Brightening and Enhanced Quantum Yield in Size-Purified Silicon Nanocrystals.” Joseph B. Miller, Austin R. Van Sickle, Rebecca J. Anthony, Daniel M. Kroll, Uwe R. Kortshagen, and Erik K. Hobbie, ACS Nano, 6(8), 7389-7396 (2012). doi: 10.1021/nn302524k

  • "On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies.” Daniel C. Hannah, Jihua Yang, Paul Podsiadlo, Maria K.Y. Chan, Arnaud Demortière, David J. Gosztola, Vitali B. Prakapenka, George C. Schatz, Uwe Kortshagen, and Richard D. Schaller, Nano Lett., 12(8), 4200-4205 (2012). doi: 10.1021/nl301787g

  • “An All-Gas-Phase Approach for the Fabrication of Silicon Nanocrystal Light-Emitting Devices,” Rebecca J. Anthony, Kai-Yuan Cheng, Zachary C. Holman, Russell J. Holmes, and Uwe R. Kortshagen, Nano Lett., 12(6), 2822 (2013). doi: 10.1021/nl300164z

  • “The 2012 Plasma Roadmap.” Seiji Samukawa, Masaru Hori, Shahid Rauf, Kunihide Tachibana, Peter Bruggeman, Gerrit Kroesen, J. Christopher Whitehead, Anthony B. Murphy, Alexander F. Gutsol, Svetlana Starikovskaia, Uwe Kortshagen, Kean-Pierre Boeuf, Timothy J. Sommerer, Mark J. Kushner, Uwe Czarnetzki, and Nigel Mason, J. Phys. D: Appl. Phys., 45(25), 253001 (2012). doi: 10.1088/0022-3727/45/25/253001

  • “Hybrid solar cells from MDMO-PPV and silicon nanocrystals.” Chin-Yi Liu and Uwe R. Kortshagen, Nanoscale, 4(13), 3963-3968 (2012). doi: 10.1039/C2NR30436H

  • “The energy distribution function of ions impinging on nanoparticles in a collisional low-pressure plasma,” Federico Galli, Meenakshi Mamunuru and Uwe R. Kortshagen, Plasma Sources Sci. Technol. 21(3), 035002 (2012). doi: 10.1088/0963-0252/21/3/035002

  • “Absolute absorption cross sections of ligand-free colloidal germanium nanocrystals,” Zachary C. Holman and Uwe R. Kortshagen, Appl. Phys. Lett. 100(13), 133108 (2012). doi: 10.1063/1.3698091

  • “Routes to Achieving High Quantum Yield Luminescence from Gas-Phase-Produced Silicon Nanocrystals.” Rebecca J. Anthony, David J. Rowe, Matthias Stein, Jihua Yang, Uwe Kortshagen, Adv. Func.. Mater., 21(21), 4042-4046 (2011). doi: 10.1002/adfm.201100784

  • “Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals.” Ryan Gresback, Ryan Hue, Wane L. Gladfelter, and Uwe R. Kortshagen, Nanoscale Res. Lett., 6, 68 (2011). doi: 10.1186/1556-276X-6-68

  • “Quantum confinement in germanium nanocrystal thin films.” Zachary C. Holman, Uwe R. Kortshagen, Phys. Status Solidi. Rapid Res. Lett., 5(3), 110-112 (2011). doi: 10.1002/pssr.201105031

  • “Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds.” R.N. Pereira, D.J. Rowe, R.J. Anthony, and U. Kortshagen, Phys. Rev. B, 83(15), 155327 (2011). doi: 10.1103/PhysRevB.83.155327

  • “Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals.” Zachary C. Holman and Uwe R. Kortshagen, Nano Lett., 11(5), 2133-2136 (2011). doi: 10.1021/nl200774y

  • “High-Efficiency Silicon Nanocrystal Light-Emitting Devices.” Kai-Yuan Cheng, Rebecca Anthony, Uwe R. Kortshagen, and Russell J. Holmes, Nano Lett., 11(5),  1952-1956 (2011). doi: 10.1021/nl2001692

  • “Plasma production of nanodevice-grade semiconductor nanocrystals.” Z.C. Holman and U.R. Kortshagen, J. Phys. D: Appl. Phys., 44(17), 174009 (2011). doi: 10.1088/0022-3727/44/17/174009

  • “Structural and electronic properties of dual plasma codeposited mixed-phase amorphous/nanocrystalline thin films.” Y. Adjallah, C. Anderson, U. Kortshagen, J. Kakalios, J. Appl. Phys., 107(4), 043704 (2010). doi: 10.1063/1.3285416

  • “Hybrid Silicon Nanocrystal-Organic Light-Emitting Devices for Infrared Electroluminescence.” Kai-Yuan Cheng, Rebecca Anthony, Uwe R. Kortshagen, and Russell J. Holmes, Nano Lett., 10, (4), 1154-1157 (2010). doi: 10.1021/nl903212y

  • “Charging, Coagulation, and Heating Model of Nanoparticles in a Low-Pressure Plasma Accounting for Ion-Neutral Collisions.” Federico Galli; Uwe R. Kortshagen, IEEE Trans. Plasma Sci., 38, (4), 803-809 (2010). doi: 10.1109/TPS.2009.2035700

  • “A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals.” Z.C. Holman and U.R. Kortshagen, Nanotechnology 21(33) 335302 (2010). doi: 10.1088/0957-4484/21/33/335302

  • “Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution.” Zachary C. Holman, Chin-Yi Liu, and Uwe R. Kortshagen, Nano Lett. 10, (7), 2661-2666 (2010). doi: 10.1021/nl101413d

  • “Optimization of Si NC/P3HT Hybrid Solar Cells.” Chin-Yi Liu, Zachary C. Holman, Uwe R. Kortshagen, Adv. Funct. Mater. 20, (13), 2157-2164 (2010). doi: 10.1002/adfm.200902471

  • “A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals.” Chin-Yi Liu & Uwe R. Kortshagen, Nanoscale Res. Lett. 5(8), 1253-1256 (2010). doi: 10.1007/s11671-010-9632-z

  • “Heat transfer-A review of 2005 literature.” Goldstein, R. J.; Ibele, W. E.; Patankar, S. V.; Simon, T. W.; Kuehn, T. H.; Strykowski, P. J.; Tamma, K. K.; Heberlein, J. V. R.; Davidson, J. H.; Bischof, J.; Kulacki, F. A.; Kortshagen, U.; Garrick, S.; Srinivasan, V.; Ghosh, K.; Mittal, R., Intl. J. Heat Mass Transf. 53, (21-22), 4397-4447. (2010)

  • “Heat transfer-A review of 2004 literature.” Goldstein, R. J.; Ibele, W. E.; Patankar, S. V.; Simon, T. W.; Kuehn, T. H.; Strykowski, P. J.; Tamma, K. K.; Heberlein, J. V. R.; Davidson, J. H.; Bischof, J.; Kulacki, F. A.; Kortshagen, U.; Garrick, S.; Srinivasan, V.; Ghosh, K.; Mittal, R.,Intl. J. Heat Mass Transf. 53 (21-22), 4343-4396 (2010).

  • “Solution-Processed Germanium Nanocrystal Thin Films as Materials for Low-Cost Optical and Electronic Devices,” Zachary C. Holman and Uwe R. Kortshagen,” Langmuir 25(19), 11883–11889 (2009). doi: 10.1021/la9015228

  • “Surface chemistry dependence of native oxidation formation on silicon nanocrystals,” R. W. Liptak, U. Kortshagen, and S. A. Campbell, J. Appl. Phys. 106(6), 064313 (2009). doi: 10.1063/1.3225570

  • “Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles,” Rebecca Anthony and Uwe Kortshagen, Phys. Rev. B 80(11), 115407 (2009). doi: 10.1103/PhysRevB.80.115407

  • “Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals,” X. D. Pi and U. Kortshagen, Nanotechnology 20(29) 295602 (2009). doi: 10.1088/0957-4484/20/29/295602

  • “Nanoscale design to enable the revolution in renewable energy,” Jason Baxter, Zhixi Bian, Gang Chen, David Danielson, Mildred S. Dresselhaus, Andrei G. Fedorov, Timothy S. Fisher, Christopher W. Jones, Edward Maginn, Uwe Kortshagen, Arumugam Manthiram, Arthur Nozik, Debra R. Rolison, Timothy Sands, Li Shi, David Sholl and Yiying Wu, Energy Environ. Sci. 2, 559 (2009). doi: 10.1039/B821698C

  • “Topical Review: Nonthermal plasma synthesis of semiconductor nanocrystals,” (invited) Uwe Kortshagen, J. Phys. D: Appl. Phys. 42, 113001 (2009). doi: 10.1088/0022-3727/42/11/113001

  • “Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals,” István Robel, Ryan Gresback, Uwe Kortshagen, Richard D. Schaller, Victor I. Klimov, Phys. Rev. Lett., 102, 177404 (2009). doi: 10.1103/PhysRevLett.102.177404

  • “Selective nanoparticle heating: Another form of nonequilibrium in dusty plasmas,” Lorenzo Mangolini and Uwe Kortshagen, Phys. Rev. E 79, 026405 (2009). doi: 10.1103/PhysRevE.79.026405

  • “Hybrid solar cells from P3HT and silicon nanocrystals,” Chin-Yi Liu, Zachary C. Holman, and Uwe R. Kortshagen, Nano Lett. 9(1), 449-452 (2009). doi: 10.1021/nl8034338

  • “SF6 Plasma etching of silicon nanocrystals,” R.W. Liptak, B. Devetter, J.H. Thomas III, U. Kortshagen and S. Campbell, Nanotechnology 20, 035603 (2009). doi: 10.1088/0957-4484/20/3/035603

  • “Analytical model of particle charging in plasmas over a wide range of collisionality,” Marco Gatti and Uwe Kortshagen, Phys. Rev. E 78, 046402 (2008). doi: 10.1103/PhysRevE.78.046402

  • “Plasma synthesis of group IV quantum dots for luminescence and photovoltaic applications,” Uwe Kortshagen, Rebeccah Anthony, Ryan Gresback, Zachary Holman, Rebekah Ligman, Chin-Yi Liu, Lorenzo Mangolini, and Stephen A. Campbell, Pure Appl. Chem. 80 (9), 1901–1908 (2008). doi: 10.1351/pac200880091901

  • “Air-stable full-visible-spectrum emission from silicon nanocrystal ensembles synthesized by an all-gas-phase plasma approach,” X. D. Pi, R. W. Liptak, J. D. Nowak, N. Wells, D. A. Blank, C. B. Carter, S. A. Campbell , and U. Kortshagen, Nanotech. 19, 245603 (2008). doI: 10.1088/0957-4484/19/24/245603

  • “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” X. D. Pi and R. Gresback, R. W. Liptak ,S. A. Campbell, U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008). doi: 10.1063/1.2897291

  • “Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies,” Milan Sykora, Lorenzo Mangolini, Richard D. Schaller, Uwe Kortshagen, David Jurbergs, and Victor I. Klimov, Phys. Rev. Lett. 100, 067401 (2008). doi: 10.1103/PhysRevLett.100.067401

  • “Plasma-Assisted Synthesis of Silicon Nanocrystal Inks,” L. Mangolini and U.  Kortshagen, Adv. Mater. 19, 2513 (2007) (featured on cover). doi: 10.1002/adma.200700595

  • “Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals,” Ryan Gresback, Zachary Holman, and Uwe Kortshagen, Appl. Phys. Lett. 91, 093119 (2007). doi: 10.1063/1.2778356

  • “In-flight dry etching of plasma-synthesized silicon nanocrystals,” X. D. Pi, R. Liptak, S. A. Campbell, U. Kortshagen, Appl. Phys. Lett. 91, 083112 (2007). doi: 10.1063/1.2773931

  • “TEM Characterization of CdSe Quantum Dot Sensitized ZnO Nanowires,” R. Divakar, J. Basu, K. S. Leschkies, U. R. Kortshagen, E. S. Aydil, D. J. Norris, C. Barry Carter, Microsc. 13(Suppl 2) (2007). doi: 10.1017/S1431927607076544

  • “Nonthermal plasma synthesis of faceted Germanium nanocrystals,” P. Cernetti, R.Gresback, S. A. Campbell, and U. Kortshagen, Chem. Vap. Depos. 13, 345 (2007). doi: 10.1002/cvde.200606559

  • “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices,” K. Leschkies, R. Divakar, J. Basu, C. B. Carter, U. Kortshagen, E Aydil, and D. Norris, Nano Lett. 7, 1793 (2007). doi: 10.1021/nl070430o

  • “A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices,” Ameya Bapat, Marco Gatti, Yong-Ping Ding, Stephen Campbell and Uwe Kortshagen, J. Phys. D: Appl. Phys. 40, 2247 (2007). doi: 10.1088/0022-3727/40/8/S03

  • “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” X. D. Pi, L. Mangolini, S. A. Campbell, U. Kortshagen, Phys. Rev. B 75, 085423 (2007). doi: 10.1103/PhysRevB.75.085423

  • "Electroluminescence from Surface Oxidized Silicon Nanoparticles Dispersed Within a Polymer Matrix," Rebekah K. Ligman, Lorenzo Mangolini, Uwe R. Kortshagen, and Stephen A. Campbell, J. Appl. Phys. 90, 061116 (2007). doi: 10.1063/1.2471662

  • “Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications” Uwe Kortshagen, Lorenzo Mangolini, and Ameya Bapat, Journal of Nanoparticle Research 9, 39-52 (2007). doi: 10.1007/s11051-006-9174-6

  • “Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD,” Tomohiro Nozaki, Kuma Ohnishi, Ken Okazaki and Uwe Kortshagen, Carbon 45, 364-374 (2007). doi: 10.1016/j.carbon.2006.09.009

  • “High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation,” L. Mangolini, D. Jurbergs, E. Rogojinaand U. Kortshagen, Phys. Stat. Sol. (c), 3 (11), 3975-3978 (2006). doi: 10.1002/pssc.200671606

  • “Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals,” L. Mangolini, D. Jurbergs, E. Rogojina, and U. Kortshagen, J. Luminescence 121, 327-334 (2006). doi: 10.1016/j.jlumin.2006.08.068

  • “Single Nanoparticle Semiconductor Devices,” Yongping Ding, Ying Dong, Ameya Bapat, Julia D. Nowak, C. Barry Carter, Uwe R. Kortshagen, and Stephen A. Campbell, IEEE Trans. Electron Devices 53 (10), 2525 (2006). doi: 10.1109/TED.2006.882047

  • “Plasticity responses in ultra-small confined cubes and films,” M.J. Cordill, M.D. Chambers, M.S. Lund, D.M. Hallman, C.R. Perrey, C.B. Carter, A. Bapat, U. Kortshagen, W.W. Gerberich, Acta Mater. 54, 4515-4523 (2006). doi: 10.1016/j.actamat.2006.05.037

  • “TEM Study of the Morphology of Nanoparticles,” J. Deneen, P. Cernetti, R. Gresback, U. Kortshagen, and C. B. Carter, Microsc. 12 (S02), 612, (2006). doi: 10.1017/S1431927606069443

  • “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” David Jurbergs, Elena Rogojina, Lorenzo Mangolini, and Uwe Kortshagen, Appl. Phys. Lett. 88, 233116 (2006). doi: 10.1063/1.2210788

  • “Nonlocal kinetics of the electrons in a low-pressure afterglow plasma,” Sergey Gorchakov, Dirk Uhrlandt, Michael Hebert, and Uwe Kortshagen, Phys. Rev. E 73, 056402 (2006) doi: 10.1103/PhysRevE.73.056402

  • “Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge,” Tomohiro Nozaki, Tomoya Goto, Ken Okazaki, Kuma Ohnishi, Lorenzo Mangolini, Joachim Heberlein, and Uwe Kortshagen, J. Appl. Phys. 99, 024310 (2006). doi: 10.1063/1.2163997

  • “Two-dimensional Numerical Study of Atmospheric Pressure Glows in Helium with Impurities,” P. Zhang, U. Kortshagen, J. Phys. D: Appl. Phys. 39, 153-163 (2006). doi: 10.1088/0022-3727/39/1/023

  • “Heat Transfer- A Review of the 2003 literature,” R. J. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, S. Garrick, V. Srinivasan, Intl. J. Heat Mass Transf. 49, 451 (2006).

  • “High-Yield Scaleable Plasma Synthesis of Luminescent Silicon Nanocrystals,” L. Mangolini, E. Thimsen and U. Kortshagen, Nano Lett. 5(4), 655 (2005).  doi: 10.1021/nl050066y

  • “Atmospheric Pressure Glow Discharge Initiation from a Single Electron Avalanche,” Peng Zhang and U. Kortshagen, IEEE Transactions on Plasma Science 33(2), 318-319, (2005). doi: 10.1109/TPS.2005.845295

  • “Numerical Simulation of Nanoparticle Transport during plasma-enhanced chemical vapor deposition,” S. J. Warthesen, U. Kortshagen and S. L. Girshick, IEEE Transactions on Plasma Science 33(2), 398-399 (2005). doi: 10.1109/TPS.2005.845321

  • “Experimental investigations into the formation of nanoparticles in a/nc-Si:H thin films,” S. Thompson, C. R. Perrey, T. J. Belich, J. Kakalios, C. B. Carter, and U. Kortshagen, J. Appl. Physics 97, 034310 (2005). doi: 10.1063/1.1849435

  • “Heat Transfer- A Review of the 2002 literature,” R. J. Goldstein, E. R. G. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, S. Garrick, V. Srinivasan, Intl. J. Heat Mass Transf. 48, 819 (2005).

  • “Plasma synthesis of single crystal silicon nanoparticles for novel electronic device applications,” Ameya Bapat, Curtis Anderson, Christopher R. Perrey, C. Barry Carter, Stephen A. Campbell, and Uwe Kortshagen, Plasma Physics and Controlled Fusion 46, B97–B109 (2004). doi: 10.1088/0741-3335/46/12B/009

  • “The Production and Electrical Characterization of Free Standing Cubic Single Crystal Silicon Nanoparticles,” S. A. Campbell, U. Kortshagen, A. Bapat, Y. Dong, S. Hilchie, Z. Shen, Journal of Materials, JOM (formerly Journal of Metals) 56(10), 26-28 (2004). doi: 10.1007/s11837-004-0284-2

  • “Observation of Si Nanocrystals by Spherical-Aberration Corrected Transmission Electron Microscopy,” Christopher R. Perrey, Julia M. Deneen, Siri S. Thompson, Markus Lentzen, Uwe Kortshagen, and C. Barry Carter, Microsc. 10 (S02), 996 (2004). doi: 10.1017/S1431927604884976

  • “Observation of Si nanocrystals in a/nc-Si:H films by spherical-aberration corrected transmission electron microscopy,” Christopher R. Perrey, Siri Thompson, Markus Lentzen, Uwe Kortshagen, and C. Barry Carter, J. Noncrystalline Solids, 343, 78-84 (2004). doi: 10.1016/j.jnoncrysol.2004.06.013

  • “The Generation of Free-Standing Single Crystal Silicon Nanoparticles,” Y. Dong, A. Bapat, S. Hilchie, U. Kortshagen and S. A. Campbell, J. Vac. Sci. B 22(4), 1923-1930 (2004). doi: 10.1116/1.1771667

  • “Electrical Characterization of Amorphous Silicon Nanoparticles,” Z. Shen, U. Kortshagen, and S. A. Campbell, J. Appl. Phys. 96(4), 2204-2209 (2004). doi: 10.1063/1.1763991

  • “Two-dimensional space-time-resolved emission spectroscopy on atmospheric pressure glows in helium with impurities,” C. Anderson, M. Hur, P. Zhang, L. Mangolini, and U. Kortshagen, J. Appl. Phys. 96(4), 1835-39 (2004). doi: 10.1063/1.1773923

  • “Effects of current limitation through the dielectric in atmospheric pressure glows in helium,” L. Mangolini, C. Anderson, J. Heberlein, and U. Kortshagen, J. Phys. D: Appl. Phys. 37, 1021-1030 (2004). doi: 10.1088/0022-3727/37/7/012

  • “Heat Transfer- A Review of the 2001 literature,” R. J. Goldstein, E. R. G. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, S. Garrick, Intl. J. Heat Mass Transf. 46, 1887 (2003).

  • “Formation of Highly Uniform Silicon Nanoparticles in High Density Silane Plasmas,” Z. Shen, T. Kim, U. Kortshagen, P. L. McMurry, and S. A. Campbell, J. Appl. Phys. 94, 2277-2283 (2003). doi: 10.1063/1.1591412

  • “Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma,” Ameya Bapat, Christopher R. Perrey, Stephen A. Campbell, C. Barry Carter, and Uwe Kortshagen, J. Appl. Phys. 94, 1969-1974 (2003). doi: 10.1063/1.1586957

  • “Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon–silane low-pressure plasmas,” Upendra Bhandarkar, Uwe Kortshagen and Steven L Girshick, J. Phys. D: Appl. Phys. 36, 1399–1408 (2003). doi: 10.1088/0022-3727/36/12/307

  • “Modeling Gas-Phase Nucleation in Inductively-Coupled Silane-Oxygen Plasmas,” S.-M. Suh, S. L. Girshick, U. Kortshagen, and M. R. Zachariah, J. Vac. Sci. Technol. A 21, 251 (2003). doi: 10.1116/1.1531143

  • “Heat Transfer- A Review of the 2000 literature,” R. J. Goldstein, E. R. G. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, S. Garrick, Intl. J. Heat Mass Transf. 45, 2853 (2002).

  • “Experimental study of diffusive cooling of electrons in pulsed inductively coupled plasma,” Antonio Maresca, Konstantin Orlov, and Uwe Kortshagen, Phys. Rev. E 65, 056405 (2002). doi: 10.1103/PhysRevE.65.056405

  • “Analysis of Thompson Scattered Light from and Arc Plasma Jet,” G. Gregori, U. Kortshagen, J. Heberlein, and E. Pfender, Phys. Rev. E 65, 046411 (2002). doi: 10.1103/PhysRevE.65.046411

  • “Radial structure of a low frequency atmospheric pressure glow discharge in helium.” L. Mangolini, K. Orlov, U. Kortshagen, J. Heberlein, and U. Kogelschatz, Appl. Phys. Lett 80, 1722 (2002). doi: 10.1063/1.1458684

  • “Recent progress in the understanding of electron kinetics in low-pressure inductive plasmas,” U. Kortshagen, A. Maresca, K. Orlov, and B. Heil, Appl. Surf. Sci. 192, 240 (2002). doi: 10.1016/S0169-4332(02)00028-4

  • “Experimental study of the influence of nanoparticle generation on the electrical characteristics of argon-silane capacitive radio-frequency plasmas,” Z. Shen and U. Kortshagen, J. Vac. Sci. Technol. A 20, 153 (2002). doi: 10.1116/1.1427894

  • “Heat Transfer- A Review of the 1999 literature,” R. J. Goldstein, E. R. G. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, S. Garrick, Intl. J. Heat Mass Transf. 44, 3579 (2001).

  • “Heat Transfer- A Review of the 1998 literature,” R. J. Goldstein, E. R. G. Eckert, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, S. Garrick, Intl. J. Heat Mass Transf. 44, 253 (2001).

  • “Plasma Chemistry and Growth of Nanosized Particles in a C2H2 RF-Discharge,” S. Stoykov, C. Eggs, and U. Kortshagen, J. Phys. D: Appl. Phys. 34, 2160 (2001). doi: 10.1088/0022-3727/34/14/312

  • “Heat Transfer- A Review of the 1997 literature,” E. R. G. Eckert, R. J. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, Intl. J. Heat Mass Transf. 43, 2431 (2000).

  • “Heat Transfer- A Review of the 1996 literature,” E. R. G. Eckert, R. J. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, T. H. Kuehn, P. J. Strykowski, K. K. Tamma, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, Intl. J. Heat Mass Transf. 43, 1273 (2000).

  • “Modeling of Silicon Hydride Clustering in Low-Pressure Silane Plasma,” U. V. Bhandarkar, M. T. Swihart, S. L. Girshick, and U. R. Kortshagen, J. Phys. D: Appl. Phys. 33, 2731 (2000). doi: 10.1088/0022-3727/33/21/311

  • “Experimental Observation of a “Convective Cell” in Electron Phase Space in an Inductively Coupled RF Plasma,” U. Kortshagen and B. Heil, Appl. Phys. Lett. 77, 1265 (2000). doi: 10.1063/1.1289905

  • “Kinetic Modeling and Experimental Studies of Large-Scale Low-Pressure RF Discharges,” U. Kortshagen and B. Heil, J. Tech. Phys. (Special Issue XLI), 325 (2000).

  • “Heat Transfer- A Review of the 1995 literature,” E. R. G. Eckert, R. J. Goldstein, W. E. Ibele, S. V. Patankar, T. W. Simon, P. J. Strykowski, K. K. Tamma, T. H. Kuehn, A. Bar-Cohen, J. V. R. Heberlein, J. H. Davidson, J. Bischof, F. A. Kulaki, U. Kortshagen, Intl. J. Heat Mass Transf. 42, 2717 (1999). doi: 10.1016/S0017-9310(98)00277-4

  • “Generation and Growth of Nanoparticles in Low-Pressure Plasmas,” U. R. Kortshagen, U. V. Bhandarkar, S. L. Girshick, and M. T. Swihart, Pure & Appl. Chem. 71, 1871 (1999). doi: 10.1351/pac199971101871

  • “Self-consistent Monte-Carlo Simulations of Positive Column Discharges,” J. E. Lawler and U. Kortshagen, J. Phys. D: Appl. Phys, 32, 3188 (1999). doi: 10.1088/0022-3727/32/24/315

  • “Energy-Resolved Electron Particle and Energy Fluxes in Positive Column Plasmas,” U. Kortshagen and J. E. Lawler, J. Phys. D: Appl. Phys. 32, 2737 (1999). doi: 10.1088/0022-3727/32/21/305

  • “Kinetic two-dimensional modeling of inductively coupled plasmas based on a hybrid kinetic approach,” U. Kortshagen and B. Heil, IEEE Trans. Plasma Sci. 27, 1297 (1999). doi: 10.1109/27.799806

  • “Modeling of Particulate Coagulation in Low Pressure Plasmas,” U. Kortshagen and U. Bhandarkar, Phys. Rev. E 60, 887 (1999). doi: 10.1103/PhysRevE.60.887

  • “Two-Dimensional Mapping of Electron Distribution Functions in Low Pressure ICP,” B. Heil and U. Kortshagen, IEEE Trans. Plasma Sci. 27, 56 (1999). doi: 10.1109/27.763032

  • “Thomson Scattering Measurements in Atmospheric Plasma Jets,” G. Gregori, J. Schein, P. Schwendinger, U. Kortshagen, J. Heberlein and E. Pfender, Phys. Rev. E 59, 2286, (1999). doi: 10.1103/PhysRevE.59.2286

  • “Kinetic modeling of the charging of nonconducting walls in a low pressure RF inductively coupled plasma,” U. Kortshagen, J. Vac. Sci. Technol. A 16, 300 (1998). doi: 10.1116/1.580986

  • “On the use of dust plasma acoustic waves for the diagnostics of nanometer-sized contaminant particles in plasmas,” U. Kortshagen,  Appl. Phys. Lett. 71, 208 (1997). doi: 10.1063/1.119502

  • “Investigation of the 147 nm radiative efficiency of Xe Surface Wave Discharges,” N. D. Gibson, U. Kortshagen and J. E. Lawler, J. Appl. Phys. 81, 1087 (1997). doi: 10.1063/1.363851

  • “On the radial distribution and non-ambiplarity of charged particle fluxes in a nonmagnetized planar inductively coupled plasma,” G. Mümken and U. Kortshagen,  J. Appl. Phys. 80 ,6639 (1996) . doi: 10.1063/1.363786

  • “Comparison of Monte Carlo Simulations and Nonlocal Calculations of the Electron Distribution Function in a Positive Column Plasma,” U. Kortshagen, G. J. Parker, and J. E. Lawler, Phys. Rev. E. 54, 6746 (1996). doi: 10.1103/PhysRevE.54.6746

  • “The Electrical Charging of micron-sized Dust Particles in Capacitively Coupled RF Plasmas,” U. Kortshagen and G. Mümken, Phys. Lett. A. 217, 126 (1996). doi: 10.1016/0375-9601(96)00324-6

  • “A Radiometric Investigation of Low Pressure RF Sulfur Discharges,” N. D. Gibson, U. Kortshagen, and J. E. Lawler, J. Appl. Phys. 79, 7523 (1996). doi: 10.1063/1.362424

  • ]“On the E-H-mode Transition in RF inductive discharges,” U. Kortshagen, N. D. Gibson and J. E. Lawler, J. Phys. D: Appl. Phys. 29, 1224 (1996). doi: 10.1088/0022-3727/29/5/017

  • “Pulsed Discharges Produced by High Power Surface Waves,” A. Böhle, O. Ivanov, A. Kolisko, U. Kortshagen, H. Schlüter and A. Vikarev, J. Phys. D: Appl. Phys. 29, 369 (1996). doi: 10.1088/0022-3727/29/2/013

  • “On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas,” U. Kortshagen, C. Busch and L.D. Tsendin, Plasma Sources Sci. Technol. 5, 1 (1996). doi: 10.1088/0963-0252/5/1/001

  • “Ion Energy Distribution Functions in a Planar Inductively Coupled RF Discharge,” U. Kortshagen and M. Zethoff, Plasma Sources Sci. Technol. 4, 541 (1995). doi: 10.1088/0963-0252/4/4/005

  • “On the Efficiency of the Electron Sheath Heating in Capacitively Coupled RF Discharges in the Weakly Collisional Regime,” U. Buddemeier, U. Kortshagen and I. Pukropski, Appl. Phys. Lett. 67, 191 (1995). doi: 10.1063/1.114663

  • “Modelling of Microwave Discharges in the Presence of Plasma Resonances,” Yu. M. Aliev, A. V. Maximov, U. Kortshagen, H. Schlüter and A. Shivarova, Phys. Rev. E 51, 6091 (1995). doi: 10.1103/PhysRevE.51.6091

  • “Experimental Investigation and Fast Two-dimensional Self-consistent Kinetic Modelling of Low-pressure Inductively Coupled RF discharges,” U. Kortshagen, I. Pukropski and L. D. Tsendin, Phys. Rev. E. 51, 6063 (1995).  doi: 10.1103/PhysRevE.51.6063

  • “Electron and Ion Distribution Functions in Microwave and RF Plasmas,” U. Kortshagen, Plasma Sources Sci. Technol. 4, 172 (1995). doi: 10.1088/0963-0252/4/2/002

  • “Numerical Solution of the Spatially Inhomogeneous Boltzmann Equation and Verification of the Nonlocal Approach,” C. Busch and U. Kortshagen, Phys. Rev. E 51, 280 (1995). doi: 10.1103/PhysRevE.51.280

  • “Fast Two-dimensional Self-consistent Kinetic Modelling of Low-pressure Inductively Coupled RF Discharges,” U. Kortshagen and L. D. Tsendin, Appl. Phys. Lett. 65, 1355 (1994). doi: 10.1063/1.112050

  • “Spatial Variation of the Electron Distribution Function in a RF Inductively Coupled Plasma: Experimental and Theoretical Study,” U. Kortshagen, I. Pukropski and M. Zethoff, J. Appl. Phys. 76, 2048 (1994). doi: 10.1063/1.357674

  • “On the Influence of Metastable Atoms on Surface Wave Produced Helium Plasmas,” J. Berndt, U. Kortshagen and H. Schlüter, J. Phys. D: Appl. Phys. 27 1470 (1994). doi: 10.1088/0022-3727/27/7/019

  • “Experimental Evidence on the Nonlocality of the Electron Distribution Function,” U. Kortshagen, Phys. Rev. E 49, 4369 (1994). doi: 10.1103/PhysRevE.49.4369

  • “On the Influence of Excited Atoms on the Electron Kinetics of a High Frequency Sustained Argon Plasma,” A. Böhle and U. Kortshagen, Plasma Sources Sci. Technol. 3, 80 (1994). doi: 10.1088/0963-0252/3/1/010

  • “Electron Energy Distribution Functions in Microwave Discharges Created by Propagating Microwaves,” U. Kortshagen, A. Shivarova, E. Tatarova and D. Zamfirov, J. Phys. D: Appl. Phys. 27, 301 (1994). doi: 10.1088/0022-3727/27/2/019

  • “A Nonlocal Kinetic Model Applied to Microwave Plasmas in Cylindrical Geometry,” U. Kortshagen, J. Phys. D: Appl. Phys. 26, 1691 (1993). doi: 10.1088/0022-3727/26/10/021

  • “On the Influence of the Energy Transfer Efficiency on the Electron Energy Distribution Function in HF Sustained Rare Gas Plasmas: Experimental and Numerical Study,” U. Kortshagen, J. Phys. D: Appl. Phys. 26, 1230 (1993). doi: 10.1088/0022-3727/26/8/012

  • “Analytical Study of the Influence of Electron-Electron Collisions on the High Energy Part of the Electron Energy Distribution Function,” U. Kortshagen, A.V. Maximov and H. Schlüter, Phys. Scr. 46, 450 (1992). doi: 10.1088/0031-8949/46/5/011

  • “Dispersion Characteristics and Radial Field Distribution of Surface Waves in the Collisional Regime,” M. Zethoff and U. Kortshagen, J. Phys. D: Appl. Phys. 25,1574 (1992). doi: 10.1088/0022-3727/25/11/003

  • “On the Influence of Coulomb Collisions on the Electron Energy Distribution Function of Surface Wave Produced Argon Plasmas,” U. Kortshagen and H. Schlüter, J. Phys. D: Appl. Phys. 25, 644 (1992). doi: 10.1088/0022-3727/25/4/010

  • “Determination of Electron Energy Distribution Functions in Surface Wave Produced Plasmas: II. Measurements,” U. Kortshagen and H. Schlüter, J. Phys. D: Appl. Phys. 24, 1585 (1991). doi: 10.1088/0022-3727/24/9/010

  • “Determination of Electron Energy Distribution Functions in Surface Wave Produced Plasmas: I. Modelling,” U. Kortshagen, H. Schlüter and A. Shivarova, J. Phys. D: Appl. Phys. 24, 1571 (1991). doi: 10.1088/0022-3727/24/9/010

  • “Experimental and Numerical Study of Electromagnetic Effects on Resonance Cones,” U. Kortshagen and A. Piel, Physics of Fluids B: Plasma Physics 1, 538 (1989). doi: 10.1063/1.859169