Publications

banner

 

201. “Near-Infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering,” Y Qin, XT Kong, Z Wang, AO Govorov, UR Kortshagen, ACS Photonics, (2017).

200. “Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals,” BT Diroll, KS Schramke, P Guo, UR Kortshagen, RD Schaller, Nano Letters, (2017).

199. “ZnO Nanocrystal Networks Near the Insulator-Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light,” Benjamin L Greenberg, Zachary L Robinson, Konstantin V Reich, Claudia Gorynski, Bryan N Voigt, Lorraine F Francis, Boris I Shklovskii, Eray S Aydil, Uwe R Kortshagen, Nano Letters, (2017).

198. “Doped Silicon Nanocrystal Plasmonics,” Hui Zhang, Runmin Zhang, Katelyn S Schramke, Nicholas M Bedford, Katharine Hunter, Uwe R Kortshagen, Peter Nordlander, ACS Photonics 4 (4), 963-970, (2017).

197. “Low Intensity UV Treatment of Zinc Oxide Nanocrystal Thin Films,” G Nelson, B Greenberg, E Aydil, U Kortshagen, Bulletin of the American Physical Society 62, (2017).

196. “Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots,” Francesco Meinardi, Samantha Ehrenberg, Lorena Dhamo, Francesco Carulli, Michele Mauri, Francesco Bruni, Roberto Simonutti, Uwe Kortshagen, Sergio Brovelli, Nature Photonics 11 (3), 177-185, (2017).

195. “Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals,” KI Hunter, JT Held, KA Mkhoyan, UR Kortshagen, ACS Applied Materials & Interfaces 9 (9), 8263-8270, (2017).

194. “Abrupt Size Partitioning of Multimodal Photoluminescence Relaxation in Monodisperse Silicon Nanocrystals,” SL Brown, JB Miller, RJ Anthony, UR Kortshagen, A Kryjevski, EK Hobbie, ACS nano 11 (2), 1597-1603, (2017).

193. “A New Generation of Primary Luminescent Thermometers Based on Silicon Nanoparticles and Operating in Different Media,” Alexandre MP Botas, Carlos DS Brites, Jeslin Wu, Uwe Kortshagen, Rui N Pereira, Luís D Carlos, Rute AS Ferreira, Particle & Particle Systems Characterization 33 (10), 740-748, (2016).

192. “Plasma-produced nanocrystals enable new insights in semiconductor physics,” Benjamin Greenberg, Zachary Robinson, Claudia Gorynski, Bryan Voigt, Lorraine Francis, Eray Aydil, Uwe Kortshagen, APS Meeting Abstracts, (2016).

191. “Synthesis of epitaxially grown core/shell nanocrystals with nonthermal plasmas, ” K Hunter, J Held, A Mkhoyan, U Kortshagen, APS Meeting Abstracts, (2016).

190. “Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications,” UR Kortshagen, RM Sankaran, RN Pereira, SL Girshick, JJ Wu, ES Aydil, Chem. Rev 116 (18), 11061-11127, (2016).

189. “Enhancing Silicon Nanocrystal Photoluminescence through Temperature and Microstructure” Samuel L Brown, Dayton J Vogel, Joseph B Miller, Talgat M Inerbaev, Rebecca J Anthony, Uwe R Kortshagen, Dmitri S Kilin, Erik K Hobbie, The Journal of Physical Chemistry C 120 (33), 18909-18916, (2016).

188. “Quantification of Elemental Distribution in Spherical Core-Shell Nanoparticles Measured by STEM-EDX,” JT Held, K Hunter, UR Kortshagen, KA Mkhoyan, Microscopy and Microanalysis 22 (S3), 128-129, (2016).

187. “Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals,” N Bilik, BL Greenberg, J Yang, ES Aydil, UR Kortshagen, Journal of Applied Physics 119 (24), 243302, (2016).

186. “Influence of the surface termination on the light emission of crystalline silicon nanoparticles,” Alexandre MP Botas, Rebecca J Anthony, Jeslin Wu, David J Rowe, Nuno JO Silva, Uwe Kortshagen, Rui N Pereira, Rute AS Ferreira, Nanotechnology 27 (32), 325703, (2016).

185. “Metal-insulator transition in films of doped semiconductor nanocrystals,” T Chen, KV Reich, NJ Kramer, H Fu, UR Kortshagen, BI Shklovskii, arXiv preprint arXiv:1606.04451, (2016).

184. “Controlled synthesis of germanium nanoparticles by nonthermal plasmas,” Amir Mohammad Ahadi, Katharine I Hunter, Nicolaas J Kramer, Thomas Strunskus, Holger Kersten, Franz Faupel, Uwe R Kortshagen, Applied Physics Letters 108 (9), 093105, (2016).

183. “Generation of hot carrier population in colloidal silicon quantum dots for high-efficiency photovoltaics,” Pengfei Zhang, Yu Feng, Xiaoming Wen, Wenkai Cao, Rebecca Anthony, Uwe Kortshagen, Gavin Conibeer, Shujuan Huang, Solar Energy Materials and Solar Cells 145, 391-396, (2016).

182. “Broadband absorbing exciton–plasmon metafluids with narrow transparency windows,” Jihua Yang, Nicolaas J Kramer, Katelyn S Schramke, Lance M Wheeler, Lucas V Besteiro, Christopher J Hogan Jr, Alexander O Govorov, Uwe R Kortshagen, Nano letters 16 (2), 1472-1477, (2016).

181. “Laser light scattering from silicon particles generated in an argon diluted silane plasma” Y Qin, N Bilik, UR Kortshagen, ES Aydil, Journal of Physics D: Applied Physics 49 (8), 085203, (2016).

180. “Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment,” JJ Wu, VSSK Kondeti, PJ Bruggeman, UR Kortshagen, Journal of Physics D: Applied Physics 49 (8), 08LT02, (2016).

179. “Nonthermal Plasma Synthesis of Nanocrystals: Fundamentals, Applications, and Future Research Needs,” U Kortshagen, Plasma Chemistry and Plasma Processing 36 (1), 73-84, (2016).

178. “Self-assembly of plasmonic/excitonic silicon nanocrystals into photonic crystals,” J Yang, NJ Kramer, CJ Hogan, UR Kortshagen, MRS Communications 5 (4), 573-577, (2015).

177. “Nonequilibrium-plasma-synthesized ZnO nanocrystals with plasmon resonance tunable via al doping and quantum confinement,” Benjamin L Greenberg, Shreyashi Ganguly, Jacob T Held, Nicolaas J Kramer, K Andre Mkhoyan, Eray S Aydil, Uwe R Kortshagen, Nano letters 15 (12), 8162-8169, (2015).

176. “Surface structure and silicon nanocrystal photoluminescence: the role of hypervalent silyl groups” Y Shu, UR Kortshagen, BG Levine, RJ Anthony, The Journal of Physical Chemistry C 119 (47), 26683-26691, (2015).

175. “Size dependent evolution of phonon confinement in colloidal Si nanoparticles” P Zhang, Y Feng, R Anthony, U Kortshagen, G Conibeer, S Huang, Journal of Raman Spectroscopy 46 (11), 1110-1116, (2015).

174. “Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates,” Joseph B Miller, Naveen Dandu, Kirill A Velizhanin, Rebecca J Anthony, Uwe R Kortshagen, Daniel M Kroll, Svetlana Kilina, Erik K Hobbie, ACS nano 9 (10), 9772-9782, (2015).

173. “Atmospheric Pressure RF Discharge for Nanocrystal Synthesis,” N Bilik, B Greenberg, U Kortshagen, APS Meeting Abstracts, (2015).

172. “Nanoparticle heating in atmospheric pressure plasmas,” N Kramer, E Aydil, U Kortshagen, APS Meeting Abstracts, (2015).

171. “Silicon nanocrystal inks, films, and methods,” LM Wheeler, UR Kortshagen, US Patent 9,123,538 (2015).

170. “Special issue on plasma synthesis of nanoparticles,” R Mohan Sankaran, Uwe Kortshagen, B Barwe, F Riedel, OE Cibulka, I Pelant, J Benedikt, J. Phys. D. Appl. Phys. 48, 310301 (2015)

169. “Plasmonic properties of silicon nanocrystals doped with boron and phosphorus,” NJ Kramer, KS Schramke, UR Kortshagen, Nano letters 15 (8), 5597-5603 (2015).

168. “ Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur,” E Thimsen, UR Kortshagen, ES Aydil, Journal of Physics D: Applied Physics 48 (31), 314004 (2015).

167. “Tunability limit of photoluminescence in colloidal silicon nanocrystals,” Xiaoming Wen, Pengfei Zhang, Trevor A Smith, Rebecca J Anthony, Uwe R Kortshagen, Pyng Yu, Yu Feng, Santosh Shrestha, Gavin Coniber, Shujuan Huang, Scientific reports 5, 12469, (2015)

166. “ Group iv nanocrystals having a surface substantially free of oxygen,” UR Kortshagen, NJ Kramer, LM Wheeler, T Chen, US Patent App. 14/690,970 (2015).

165. “Coupling the coffee-ring effect to phase separation in drying polymer-nanocrystal deposits,” Erik K Hobbie, Joseph B Miller, Austin CP Usselman, Rebecca J Anthony, Uwe R Kortshagen, Alexander J Wagner, Alan R Denton, Bulletin of the American Physical Society 60 (2015).

164. “Langmuir probe measurements of electron energy probability functions in dusty plasmas,” N Bilik, R Anthony, BA Merritt, ES Aydil, UR Kortshagen, Journal of Physics D: Applied Physics 48 (10), 105204 (2015).

163. “Coupling the coffee-ring effect to phase separation in drying polymer-nanocrystal deposits,” EK Hobbie, JB Miller, ACP Usselman, RJ Anthony, UR Kortshagen, et alia, Bulletin of the American Physical Society 60 (2015).

162. “Impact of particle interactions on the photoluminescent stability of silicon nanocrystal clusters,” JB Miller, N Dandu, RJ Anthony, UR Kortshagen, DM Kroll, S Kilina, et alia, Bulletin of the American Physical Society 60 (2015).

161. “Reply to “Comment on Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer,” DC Hannah, J Yang, NJ Kramer, GC Schatz, UR Kortshagen, RD Schaller, ACS Photonics 2 (3), 456-458 (2015).

160. “Comment on “Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer”,” K Kusová, L Ondič, I Pelant, ACS Photonics 2 (3), 454-455 (2015).

159. “Requirements for plasma synthesis of nanocrystals at atmospheric pressures,” NJ Kramer, ES Aydil, UR Kortshagen, Journal of Physics D: Applied Physics 48 (3), 035205 (2015).

158. “UV and air stability of high-efficiency photoluminescent silicon nanocrystals,” J Yang, R Liptak, D Rowe, J Wu, J Casey, D Witker, SA Campbell, Applied Surface Science 323, 54-58 (2014).

157. “High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas,” E Thimsen, M Johnson, X Zhang, AJ Wagner, KA Mkhoyan, et alia, Nature communications 5 (2014).

156. “Nanoparticle heating at atmospheric pressures,” N Kramer, E Aydil, U Kortshagen, Bulletin of the American Physical Society 59 (2014).

155. “Langmuir probe measurements of the electron energy probability function and laser scattering in nanodusty plasmas,” N Bilik, Y Qin, E Aydil, U Kortshagen, Bulletin of the American Physical Society 59 (2014).

154. “Quantum confinement in mixed phase silicon thin films grown by co-deposition plasma processing,” JD Fields, S McMurray, LR Wienkes, J Trask, C Anderson, PL Miller, et alia, Solar Energy Materials and Solar Cells 129, 7-12 (2014).

153. “Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer,” DC Hannah, J Yang, NJ Kramer, GC Schatz, UR Kortshagen, RD Schaller, ACS Photonics 1 (10), 960-967 (2014).

152. “Silicon Nanocrystals at Elevated Temperatures: Retention of Photoluminescence and Diamond Silicon to β-Silicon Carbide Phase Transition,” CE Rowland, DC Hannah, A Demortière, J Yang, RE Cook, et alia, ACS nano 8 (9), 9219-9223 (2014).

151. “Carrier Transport in Films of Alkyl-Ligand-Terminated Silicon Nanocrystals,” T Chen, B Skinner, W Xie, BI Shklovskii, UR Kortshagen, The Journal of Physical Chemistry C 118 (34), 19580-19588 (2014).

150. “Strength and Plasticity of H-and Oxide-Terminated Cubic Si Nanocrystals,” AJ Wagner, E Hintsala, U Kortshagen, W Gerberich, KA Mkhoyan, Microscopy and Microanalysis 20 (S3), 1460-1461 (2014).

149. “Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors,” R Gresback, NJ Kramer, Y Ding, T Chen, UR Kortshagen, T Nozaki, ACS nano 8 (6), 5650-5656 (2014).

148. “High Quantum Yield Dual Emission from Gas-Phase Grown Crystalline Si Nanoparticles,” AMP Botas, RAS Ferreira, RN Pereira, RJ Anthony, T Moura, DJ Rowe, et alia, The Journal of Physical Chemistry C 118 (19), 10375-10383 (2014).

147. “Nanoparticles: Highly Luminescent ZnO Quantum Dots Made in a Nonthermal Plasma,” P Felbier, J Yang, J Theis, RW Liptak, A Wagner, A Lorke, G Bacher, et alia, Advanced Functional Materials 24 (14), 1962-1962 (2014).

146. “Highly luminescent ZnO quantum dots made in a nonthermal plasma,” P Felbier, J Yang, J Theis, RW Liptak, A Wagner, A Lorke, G Bacher, et alia, Advanced Functional Materials 24 (14), 1988-1993 (2014).

145. “Influence of Size Purification and Self-Assembly on the Photoluminescence of Silicon Nanocrystal Ensembles,” J Miller, A Van Sickle, R Anthony, U Kortshagen, D Kroll, E Hobbie, ECS Transactions 61 (5), 199-204 (2014).

144. “Plasma-induced crystallization of silicon nanoparticles,” NJ Kramer, RJ Anthony, M Mamunuru, ES Aydil, UR Kortshagen, Journal of Physics D: Applied Physics 47 (7), 075202 (2014).

143. “Boron-and phosphorus-doped silicon germanium alloy nanocrystals—Nonthermal plasma synthesis and gas-phase thin film deposition,” DJ Rowe, UR Kortshagen, APL Materials 2 (2), 022104 (2014).

142. “Plasma synthesis of stoichiometric Cu 2 S nanocrystals stabilized by oleylamine,” E Thimsen, UR Kortshagen, ES Aydil, Chemical Communications 50 (61), 8346-8349 (2014).

141. “Phase separation and the ‘coffee-ring’effect in polymer–nanocrystal mixtures,” JB Miller, ACP Usselman, RJ Anthony, UR Kortshagen, AJ Wagner, et alia, Soft matter 10 (11), 1665-1675 (2014).

140. “Propagating Nanocavity-Enhanced Rapid Crystallization of Silicon Thin Films,” AJ Wagner, CM Anderson, JN Trask, L Cui, A Chov, KA Mkhoyan, et alia, Nano letters 13 (11), 5735-5739 (2013).

140. “Tunable Band Gap Emission and Surface Passivation of Germanium Nanocrystals Synthesized in the Gas Phase,” LM Wheeler, LM Levij, UR Kortshagen, The Journal of Physical Chemistry Letters 4 (20), 3392-3396 (2013).

139. “The Contribution of Back Stress to Strength in Nanomaterials,” AJ Wagner, ED Hintsala, UR Kortshagen, WW Gerberich, KA Mkhoyan, Microscopy and Microanalysis 19 (S2), 522-523 (2013).

138. “Analytical STEM Study of P-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance,” JS Jeong, DJ Rowe, UR Kortshagen, KA Mkhoyan, Microscopy and Microanalysis 19 (S2), 1508-1509 (2013).

137. “Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals,” LM Wheeler, NR Neale, T Chen, UR Kortshagen, Nature communications 4 (2013).

136. “On the Origin of Efficient Photoluminescence in Silicon Nanocrystals,” D Hannah, J Yang, P Podsiadlo, M Chan, A Demortiere, D Gosztola, et alia, CLEO: QELS_Fundamental Science, QTu2O. 2 (2013).

135. “Temperature dependent photoluminescence of size-purified silicon nanocrystals,” AR Van Sickle, JB Miller, C Moore, RJ Anthony, UR Kortshagen, et alia, ACS applied materials & interfaces 5 (10), 4233-4238 (2013).

134. “Multiple Exciton Generation in Colloidal Si Nanocrystals at the Energy-Conservation-Limit,” MS Dodderi, J Yang, U Kortshagen, E Whitney, O Semonin, A Nozik, et alia, Bulletin of the American Physical Society 58 (2013).

133. “Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance,” DJ Rowe, JS Jeong, KA Mkhoyan, UR Kortshagen, Nano letters 13 (3), 1317-1322 (2013).

132. “Effects of water adsorption and surface oxidation on the electrical conductivity of silicon nanocrystal films,” N Rastgar, DJ Rowe, RJ Anthony, BA Merritt, UR Kortshagen, ES Aydil, The Journal of Physical Chemistry C 117 (8), 4211-4218 (2013).

131. “Environmental photostability of SF6-etched silicon nanocrystals,” RW Liptak, J Yang, NJ Kramer, U Kortshagen, SA Campbell, Nanotechnology 23 (39), 395205 (2012).

130. “Freestanding silicon nanocrystals with extremely low defect content,” RN Pereira, DJ Rowe, RJ Anthony, U Kortshagen, Physical Review B 86 (8), 085449 (2012).

129. “Ensemble Brightening and Enhanced Quantum Yield in Size-Purified Silicon Nanocrystals,” JB Miller, AR Van Sickle, RJ Anthony, DM Kroll, UR Kortshagen, et alia, ACS nano 6 (8), 7389-7396 (2012).

128. “On the origin of photoluminescence in silicon nanocrystals: pressure-dependent structural and optical studies,” DC Hannah, J Yang, P Podsiadlo, MKY Chan, A Demortiere, DJ Gosztola, et alia, Nano letters 12 (8), 4200-4205 (2012).

127. “The 2012 plasma roadmap,” S Samukawa, M Hori, S Rauf, K Tachibana, P Bruggeman, G Kroesen, et alia, Journal of Physics D: Applied Physics 45 (25), 253001 (2012).

126. “The energy distribution function of ions impinging on nanoparticles in a collisional low-pressure plasma,” F Galli, M Mamunuru, UR Kortshagen, Plasma Sources Science and Technology 21 (3), 035002 (2012).

125. “An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices,” RJ Anthony, KY Cheng, ZC Holman, RJ Holmes, UR Kortshagen, Nano letters 12 (6), 2822-2825 (2012).

124. “Absolute absorption cross sections of ligand-free colloidal germanium nanocrystals,” ZC Holman, UR Kortshagen, Applied Physics Letters 100 (13), 133108 (2012).

123. “Hybrid solar cells from MDMO-PPV and silicon nanocrystals,” CY Liu, UR Kortshagen, Nanoscale 4 (13), 3963-3968 (2012).

122. “Photoluminescence: Routes to Achieving High Quantum Yield Luminescence from Gas‐Phase‐Produced Silicon Nanocrystal,” RJ Anthony, DJ Rowe, M Stein, J Yang, U Kortshagen, Advanced Functional Materials 21 (21), 4041-4041 (2011).

121. “Routes to Achieving High Quantum Yield Luminescence from Gas‐Phase‐Produced Silicon Nanocrystals,” RJ Anthony, DJ Rowe, M Stein, J Yang, U Kortshagen, Advanced functional materials 21 (21), 4042-4046 (2011).

120. “Plasma production of nanodevice-grade semiconductor nanocrystals,” ZC Holman, UR Kortshagen, Journal of Physics D: Applied Physics 44 (17), 174009 (2011).

119. “Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds,” RN Pereira, DJ Rowe, RJ Anthony, U Kortshagen, Physical Review B 83 (15), 155327 (2011).

118. “Nanocrystal inks without ligands: stable colloids of bare germanium nanocrystals,” ZC Holman, UR Kortshagen, Nano letters 11 (5), 2133-2136 (2011).

117. “High-efficiency silicon nanocrystal light-emitting devices,” KY Cheng, R Anthony, UR Kortshagen, RJ Holmes, Nano letters 11 (5), 1952-1956 (2011).

116. “Quantum confinement in germanium nanocrystal thin films,” ZC Holman, UR Kortshagen, Physica status solidi (RRL)-Rapid Research Letters 5 (3), 110-112, (2011).

115. “Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals,” R Gresback, R Hue, WL Gladfelter, UR Kortshagen, Nanoscale Res Lett 6, 68 (2011).

114. “Heat transfer—A review of 2004 literature,” RJ Goldstein, WE Ibele, SV Patankar, TW Simon, TH Kuehn, et alia, International Journal of Heat and Mass Transfer 53 (21), 4343-4396 (2010).

113. “Heat transfer—a review of 2005 literature,” RJ Goldstein, WE Ibele, SV Patankar, TW Simon, TH Kuehn, et alia, International Journal of Heat and Mass Transfer 53 (21), 4397-4447 (2010).

112. “Plasma produced nanocrystals for efficient nanocrystal light emitting devices,” R Anthony, KY Cheng, R Holmes, U Kortshagen, Bulletin of the American Physical Society 55 (2010).

111. “The energy distribution of ions impinging on nanoparticles in collisional plasmas,” F Galli, M Manunuru, U Kortshagen, Bulletin of the American Physical Society 55 (2010).

110. “A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals,” ZC Holman, UR Kortshagen, Nanotechnology 21 (33), 335302 (2010).

109. “A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals,” CY Liu, UR Kortshagen, Nanoscale research letters 5 (8), 1253-1256 (2010).

108. “Optimization of Si NC/P3HT hybrid solar cells,” CY Liu, ZC Holman, UR Kortshagen, Advanced Functional Materials 20 (13), 2157-2164 (2010).

107. “Germanium and silicon nanocrystal thin-film field-effect transistors from solution,” ZC Holman, CY Liu, UR Kortshagen, Nano letters 10 (7), 2661-2666 (2010).

106. “Charging, coagulation, and heating model of nanoparticles in a low-pressure plasma accounting for ion–neutral collisions,” F Galli, UR Kortshagen, Plasma Science, IEEE Transactions on 38 (4), 803-809 (2010).

105. “Hybrid Silicon Nanocrystal− Organic Light-Emitting Devices for Infrared Electroluminescence,” KY Cheng, R Anthony, UR Kortshagen, RJ Holmes, Nano letters 10 (4), 1154-1157 (2010).

104. “Structural and electronic properties of dual plasma codeposited mixed-phase amorphous/nanocrystalline thin films,” Y Adjallah, C Anderson, U Kortshagen, J Kakalios, Journal of Applied Physics 107 (4), 043704 (2010).

103. “Silicon nanocrystals based light emitting diodes integrated using all inorganic metal oxides as the charge transport layers,” AJ Cheng, RW Liptak, U Kortshagen, SA Campbell, OPTO, 76171E-76171E-9 (2010).

102. “Plasma actuator simulation: Force contours and dielectric charging characteristics,” M Mamunuru, U Kortshagen, D Ernie, T Simon, AIAA Paper, 1-9 (2010).

101. “Surface chemistry dependence of native oxidation formation on silicon nanocrystals,” RW Liptak, U Kortshagen, SA Campbell, Journal of Applied Physics 106 (6), 064313 (2009).

100. “Nonthermal plasma synthesis of semiconductor nanocrystals,” U Kortshagen, Journal of Physics D: Applied Physics 42 (11), 113001 (2009).

99. “Separation control using DBD plasma actuators: designs for thrust enhancement,” S Guo, D Burman, D Poon, M Mamunuru, T Simon, D Ernie, U Kortshagen, AIAA paper 4184 (2009).

98. “Universal size dependence of Auger constants in direct-and indirect-gap semiconductor nanocrystals,” I Robel, R Gresback, U Kortshagen, RD Schaller, VI Klimov, Bulletin of the American Physical Society 54 (2009).

97. “Solution-Processed Germanium Nanocrystal Thin Films as Materials for Low-Cost Optical and Electronic Devices” Z. C. Holman, U. R. Kortshagen. Langmuir, 25(19), 11883-11889 (2009). doi: 10.1021/la9015228

96. “Surface chemistry dependence of native oxidation formation on silicon nanocrystals” R. W. Liptak, U. Kortshagen, S. A. Campbell. Journal of Applied Physics, 106(6), 064313 (2009). doi: 10.1063/1.3225570

95. “Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles” R. Anthony, U. Kortshagen. Physical Review B, 80(11), 6 (2009). doi: 10.1103/PhysRevB.80.115407

94. “Nonthermal plasma synthesized freestanding silicon-germanium alloy nanocrystals” X. D. Pi, U. Kortshagen. Nanotechnology, 20(29), 295602 (2009). doi: 10.1088/0957-4484/20/29/295602

93. “Nanoscale design to enable the revolution in renewable energy, ” J. Baxter, Z. X. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, Y. Y. Wu. Energy & Environmental Science, 2(6), 559-588 (2009). DOI: 10.1039/b821698c

92. “Topical Review: Nonthermal plasma synthesis of semiconductor nanocrystals,” (invited) U. Kortshagen, J. Phys. D: Appl. Phys. 42, 113001 (2009). DOI: 10.1088/0022-3727/42/11/113001

91. “Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals,” Istvan Robel, Ryan Gresback, Uwe Kortshagen, Richard Schaller, Victor Klimov, Phys. Rev. Lett., 102, 177404 (2009). DOI: 10.1103/PhysRevLett.102.177404

90. “Selective nanoparticle heating: Another form of nonequilibrium in dusty plasmas,” Lorenzo Mangolini and Uwe Kortshagen, Phys. Rev. E 79, 026405 (2009). DOI: 10.1103/PhysRevE.79.026405

89. “Hybrid solar cells from P3HT and silicon nanocrystals,” Chin-Yi Liu, Zachary C. Holman, and Uwe R. Kortshagen, Nano Letters 9(1), 449-452, (2009). DOI: 10.1021/nl8034338

88. “SF6 Plasma etching of silicon nanocrystals,” R.W. Liptak, B. Devetter, J.H. Thomas III, U. Kortshagen and S. Campbell, Nanotechnology 20, 035603 (2009). DOI: 10.1088/0957-4484/20/3/035603

87. “Analytical model of particle charging in plasmas over a wide range of collisionality,” Marco Gatti and Uwe Kortshagen, Phys. Rev. E 78, 046402, (2008). DOI: 10.1103/PhysRevE.78.046402

86. “Plasma synthesis of group IV quantum dots for luminescence and photovoltaic applications,” U.Kortshagen, R. Gresback, Z. Holman, R. Ligman, X.-Y. Liu, L. Mangolini, and S.A. Campbell, Pure and Applied Chem., 80 (9), 1901-1908, (2008). DOI: 10.1351/pac200880091901

85. “Air-stable full-visible-spectrum emission from silicon nanocrystal ensembles synthesized by an all-gas-phase plasma approach,” X. D. Pi, R. W. Liptak, J. D. Nowak, N. Wells, D. A. Blank, C. B. Carter, S. A. Campbell , and U. Kortshagen, Nanotech., 19, 123102, (2008). DOI: 10.1088/0957-4484/19/24/245603

84. “Doping efficiency, dopant location, and oxidation of Si nanocrystals,” X. D. Pi and R. Gresback, R. W. Liptak ,S. A. Campbell, U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008). DOI: 10.1063/1.2897291

83. “Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies,” Milan Sykora, Lorenzo Mangolini, Richard D. Schaller, Uwe Kortshagen, David Jurbergs, and Victor I. Klimov, Phys. Rev. Lett. 100, 067401 (2008). DOI: 10.1103/PhysRevLett.100.067401

82. “Plasma-Assisted Synthesis of Silicon Nanocrystal Inks,” Lorenzo Mangolini and Uwe Kortshagen, Advanced Materials 19, 2513 (2007) (featured on cover). DOI: 10.1002/adma.200700595

81. “Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals,” Ryan Gresback, Zachary Holman, and Uwe Kortshagen, Appl. Phys. Lett. 91, 093119 (2007). DOI: 10.1063/1.2778356

80. “In-flight dry etching of plasma-synthesized silicon nanocrystals,” X. D. Pi, R. Liptak, S. A. Campbell, U. Kortshagen, Appl. Phys. Lett. 91, 083112 (2007). DOI: 10.1063/1.2773931

79. “TEM Characterization of CdSe Quantum Dot Sensitized ZnO Nanowires,” R. Divakar, J. Basu, K. S. Leschkies, U. R. Kortshagen, E. S. Aydil, D. J. Norris, C. Barry Carter, Microsc Microanal 13(Suppl 2), 2007. DOI: 10.1017/S1431927607076544

78. “Nonthermal plasma synthesis of faceted Germanium nanocrystals,” Patrizio Cernetti, Ryan Gresback, Stephen A. Campbell, and Uwe Kortshagen, Chemical Vapor Deposition 13, 345 (2007). DOI: 10.1002/cvde.200606559

77. “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices,” K. Leschkies, R. Divakar, J. Basu, C. B. Carter, U. Kortshagen, E Aydil, and D. Norris, Nano Letters 7, 1793 (2007). DOI: 10.1021/nl070430o

76. “A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices,” Ameya Bapat, Marco Gatti, Yong-Ping Ding, Stephen Campbell and Uwe Kortshagen, J. Phys. D: Appl. Phys. 40, 2247 (2007). DOI: 10.1088/0022-3727/40/8/S03

75. “Room-temperature atmospheric oxidation of Si nanocrystals after HF etching,” X. D. Pi, L. Mangolini, S. A. Campbell, U. Kortshagen, Phys. Rev. B 75, 085423 (2007). DOI: 10.1103/PhysRevB.75.085423

74. “Electroluminescence from Surface Oxidized Silicon Nanoparticles Dispersed Within a Polymer Matrix,” Rebekah Ligman, Lorenzo Mangolini, Uwe Kortshagen, and Stephen Campbell, Appl. Phys. Lett. 90, 061116 (2007). DOI: 10.1063/1.2471662

73. “Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications” Uwe Kortshagen, Lorenzo Mangolini, Ameya Bapat, Journal of Nanoparticle Research 9, 39-52 (2007). DOI: 10.1007/s11051-006-9174-6

72. “Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD,” Tomohiro Nozaki, Kuma Ohnishi, Ken Okazaki and Uwe Kortshagen, Carbon 45, 364-374 (2007). DOI: 10.1016/j.carbon.2006.09.009

71. “High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation,” L. Mangolini, D. Jurbergs, E. Rogojina and U. Kortshagen, Phys. Stat. Sol. (c), 3 (11), 3975-3978 (2006). DOI: 10.1002/pssc.200671606

70. “Plasma synthesis and liquid-phase surface passivation of brightly luminescent Si nanocrystals,” L. Mangolini, D. Jurbergs, E. Rogojina, and U. Kortshagen, J. Luminescence 121, 327-334 (2006). DOI: 10.1016/j.jlumin.2006.08.068

69. “Single Nanoparticle Semiconductor Devices,” Yongping Ding, Ying Dong, Ameya Bapat, Julia D. Nowak, C. Barry Carter, Uwe R. Kortshagen, and Stephen A. Campbell, IEEE Trans. Electron Devices 53 (10), 2525 (2006). DOI: 10.1109/TED.2006.882047

68. “Plasticity responses in ultra-small confined cubes and films,” M.J. Cordill, M.D. Chambers, M.S. Lund, D.M. Hallman, C.R. Perrey, C.B. Carter, A. Bapat, U. Kortshagen, W.W. Gerberich, Acta Materialia 54, 4515-4523 (2006). DOI:10.1016/j.actamat.2006.05.037.

67. “TEM Study of the Morphology of Nanoparticles,” J. Deneen, P. Cernetti, R. Gresback, U. Kortshagen, and C. B. Carter, Microscopy and Microanalysis 12 (S02), 612, (2006). DOI: 10.1017/S1431927606069443

66. “Silicon Nanocrystals with Ensemble Quantum Yields exceeding 60%,” David Jurbergs, Elena Rogojina, Lorenzo Mangolini, and Uwe Kortshagen, Appl. Phys. Lett. 88, 233116 (2006). DOI: 10.1063/1.2210788

65. “Non-local kinetics of the electrons in a low-pressure afterglow plasma,” Sergey Gorchakov, Dirk Uhrlandt, Michael Hebert, and Uwe Kortshagen, Phys. Rev. E 73, 056402 (2006). DOI: 10.1103/PhysRevE.73.056402

64. “Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge,” Tomohiro Nozaki, Tomoya Goto, Ken Okazaki, Kuma Ohnishi, Lorenzo Mangolini, Joachim Heberlein, and Uwe Kortshagen, J. Appl. Phys. 99, 024310 (2006). DOI: 10.1063/1.2163997

63. “Two-dimensional Numerical Study of Atmospheric Pressure Glows in Helium with Impurities,” P. Zhang, U. Kortshagen, J. Phys. D: Appl. Phys. 39, 153-163 (2006). DOI: 10.1088/0022-3727/39/1/023

62. “High-Yield Scaleable Plasma Synthesis of Luminescent Silicon Nanocrystals,” L. Mangolini, E. Thimsen and U. Kortshagen, Nano Letters 5(4), 655 (2005). DOI: 10.1021/nl050066y

61. “Atmospheric Pressure Glow Discharge Initiation from a Single Electron Avalanche,” Peng Zhang and Uwe Kortshagen, IEEE Transactions on Plasma Science 33(2), 318-319, (2005). DOI: 10.1109/TPS.2005.845295

60. “Numerical Simulation of Nanoparticle Transport during PECVD,” Sarah J. Warthesen, Uwe Kortshagen and Steven L. Girshick, IEEE Transactions on Plasma Science 33(2), 398-399 (2005). DOI: 10.1109/TPS.2005.845321

59. “Experimental investigations into the formation of nanoparticles in a/nc-Si:H thin films,” S. Thompson, C. R. Perrey, T. J. Belich, J. Kakalios, C. B. Carter, and U. Kortshagen, J. Appl. Physics 97, 034310 (2005). DOI: 10.1063/1.1849435

58. “Plasma synthesis of single crystal silicon nanoparticles for novel electronic device applications,” Ameya Bapat, Curtis Anderson, Christopher R. Perrey, C. Barry Carter, Stephen A. Campbell, and Uwe Kortshagen, Plasma Physics and Controlled Fusion 46, B97–B109 (2004). DOI: 10.1088/0741-3335/46/12B/009

57. “The Production and Electrical Characterization of Free Standing Cubic Single Crystal Silicon Nanoparticles,” S. A. Campbell, U. Kortshagen, A. Bapat, Y. Dong, S. Hilchie, Z. Shen, Journal of Materials, JOM (formerly Journal of Metals) 56(10), 26-28 (2004). DOI: 10.1007/s11837-004-0284-2

56. “Observation of Si Nanocrystals by Spherical-Aberration Corrected Transmission Electron Microscopy,” Christopher R. Perrey, Julia M. Deneen, Siri S. Thompson, Markus Lentzen, Uwe Kortshagen, and C. Barry Carter, Microscopy and Microanalysis 10 (S02), 996 (2004). DOI: 10.1017/S1431927604884976

55. “Observation of Si nanocrystals in a/nc-Si:H films by spherical-aberration corrected transmission electron microscopy,” Christopher R. Perrey, Siri Thompson, Markus Lentzen, Uwe Kortshagen, and C. Barry Carter, J. Noncrystalline Solids, 343, 78-84 (2004). DOI: 10.1016/j.jnoncrysol.2004.06.013

54. “The Generation of Free-Standing Single Crystal Silicon Nanoparticles,” Y. Dong, A. Bapat, S. Hilchie, U. Kortshagen and S. A. Campbell, J. Vac. Sci. B 22(4), 1923-1930 (2004). DOI: 10.1116/1.1771667

53. “Electrical Characterization of Amorphous Silicon Nanoparticles,” Z. Shen, U. Kortshagen, and S. A. Campbell, J. Appl. Phys. 96(4), 2204-2209 (2004). DOI: 10.1063/1.1763991

52. “Space and time-resolved emission spectroscopy on atmospheric pressure glows in helium with impurities,” C. Anderson, M. Hur, P. Zhang, L. Mangolini, and U. Kortshagen, J. Appl. Phys. 96(4), 1835-39 (2004). DOI: 10.1063/1.1773923

51. “Effects of current limitation through the dielectric in atmospheric pressure glows in helium,” L. Mangolini, C. Anderson, J. Heberlein, and U. Kortshagen, J. Phys. D: Appl. Phys. 37, 1021-1030 (2004). DOI: 10.1088/0022-3727/37/7/012

50. “Particle Production in High Density Silane Plasmas,” Z. Shen, T. Kim, U. Kortshagen, P. L. McMurry, and S. A. Campbell, J. Appl. Phys. 94, 2277-2283 (2003). DOI: 10.1063/1.1591412

49. “Synthesis of highly oriented, single-crystal silicon nanoparticles in a low-pressure, inductively coupled plasma,” Ameya Bapat, Christopher R. Perrey, Stephen A. Campbell, C. Barry Carter, and Uwe Kortshagen, J. Appl. Phys. 94, 1969-1974 (2003). DOI: 10.1063/1.1586957

48. “Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon–silane low-pressure plasmas,” Upendra Bhandarkar, Uwe Kortshagen and Steven L Girshick, J. Phys. D: Appl. Phys. 36, 1399–1408 (2003). DOI: 10.1088/0022-3727/36/12/307

47. “Modeling Gas-Phase Nucleation in Inductively-Coupled Silane-Oxygen Plasmas,” S.-M. Suh, S. L. Girshick, U. Kortshagen, and M. R. Zachariah, J. Vac. Sci. Technol. A 21, 251 (2003). DOI: 10.1116/1.1531143

46. “Experimental study of diffusive cooling of electrons in pulsed inductively coupled plasma,” Antonio Maresca, Konstantin Orlov, and Uwe Kortshagen, Phys. Rev. E 65, 056405 (2002). DOI: 10.1103/PhysRevE.65.056405

45. “Analysis of Thompson Scattered Light from and Arc Plasma Jet,” G. Gregori, U. Kortshagen, J. Heberlein, and E. Pfender, Phys. Rev. E 65, 046411 (2002). DOI: 10.1103/PhysRevE.65.046411

44. “Radial structure of a low frequency atmospheric pressure glow discharge in helium.” L. Mangolini, K. Orlov, U. Kortshagen, J. Heberlein, and U. Kogelschatz, Appl. Phys. Lett 80, 1722 (2002). DOI: 10.1063/1.1458684

43. “Recent progress in the understanding of electron kinetics in low-pressure inductive plasmas,” U. Kortshagen, A. Maresca, K. Orlov, and B. Heil, Appl. Surf. Sci. 192, 240 (2002). DOI: 10.1016/S0169-4332(02)00028-4

42. “Experimental study of the influence of nanoparticle generation on the electrical characteristics of argon-silane capacitive radio-frequency plasmas,” Z. Shen and U. Kortshagen, J. Vac. Sci. Technol. A 20, 153 (2002). DOI: 10.1116/1.1427894

41. “Plasma Chemistry and Growth of Nanosized Particles in a C2H2 RF-Discharge,” S. Stoykov, C. Eggs, and U. Kortshagen, J. Phys. D: Appl. Phys. 34, 2160 (2001). DOI: 10.1088/0022-3727/34/14/312

40. “Modeling of Silicon Hydride Clustering in Low-Pressure Silane Plasma,” U. V. Bhandarkar, M. T. Swihart, S. L. Girshick, and U. R. Kortshagen, J. Phys. D: Appl. Phys. 33, 2731 (2000). DOI: 10.1088/0022-3727/33/21/311

39. “Experimental Observation of a “Convective Cell” in Electron Phase Space in an Inductively Coupled RF Plasma,” U. Kortshagen and B. Heil, Appl. Phys. Lett. 77, 1265 (2000). DOI: 10.1063/1.1458684

38. “Kinetic Modeling and Experimental Studies of Large-Scale Low-Pressure RF Discharges,” U. Kortshagen and B. Heil, J. Tech. Phys. (Special Issue XLI), 325 (2000).

37. “Generation and Growth of Nanoparticles in Low-Pressure Plasmas,” U. R. Kortshagen, U. V. Bhandarkar, S. L. Girshick, and M. T. Swihart, Pure & Appl. Chem. 71, 1871 (1999).

36. “Self-consistent Monte-Carlo Simulations of Positive Column Discharges,” J. E. Lawler and U. Kortshagen, J. Phys. D: Appl. Phys, 32, 3188 (1999). DOI: 10.1088/0022-3727/32/24/315

35. “Energy-Resolved Electron Particle and Energy Fluxes in Positive Column Plasmas,” U. Kortshagen and J. E. Lawler, J. Phys. D: Appl. Phys. 32, 2737 (1999). DOI: 10.1088/0022-3727/32/21/305

34. “Kinetic two-dimensional modeling of inductively coupled plasmas based on a hybrid kinetic approach,” U. Kortshagen and B. Heil, IEEE Trans. Plasma Sci. 27, 1297 (1999). DOI: 10.1109/27.799806

33. “Modeling of Particulate Coagulation in Low Pressure Plasmas,” U. Kortshagen and U. Bhandarkar, Phys. Rev. E 60, 887 (1999). DOI: 10.1103/PhysRevE.60.887

32. “Two-Dimensional Mapping of Electron Distribution Functions in Low Pressure ICP,” B. Heil and U. Kortshagen, IEEE Trans. Plasma Sci. 27, 56 (1999). DOI: 10.1109/27.763032

31. “On Thomson Scattering Measurements in Atmospheric Plasma Jets,” G. Gregori, J. Schein, P. Schwendinger, U. Kortshagen, J. Heberlein and E. Pfender, Phys. Rev. E 59, 2286, (1999). DOI: 10.1103/PhysRevE.59.2286

30. “Kinetic modeling of the charging of nonconducting walls in a low pressure RF inductively coupled plasma,” U. Kortshagen, J. Vac. Sci. Technol. A 16, 300 (1998). DOI: 10.1116/1.580986

29. “On the use of dust plasma acoustic waves for the diagnostics of nanometer-sized contaminant particles in plasmas,” U. Kortshagen, Appl. Phys. Lett. 71, 208 (1997). DOI: 10.1063/1.119502

28. “Investigation of the 147 nm radiative efficiency of Xe Surface Wave Discharges,” N. D. Gibson, U. Kortshagen and J. E. Lawler, J. Appl. Phys. 81, 1087 (1997). DOI: 10.1063/1.363851

27. “On the radial distribution of charged particle fluxes and the nonambipolar diffusion in a nonmagnetized planar inductively coupled plasma,” G. Mümken and U. Kortshagen, J. Appl. Phys. 80 ,6639 (1996). DOI: 10.1063/1.363786

26. “Comparison of Monte Carlo Simulations and Nonlocal Calculations of the Electron Distribution Function in a Positive Column Plasma,” U. Kortshagen, G. J. Parker, and J. E. Lawler, Phys. Rev. E. 54, 6746 (1996). DOI: 10.1103/PhysRevE.54.6746

25. “The Electrical Charging of micron-sized Dust Particles in Capacitively Coupled RF Plasmas,” U. Kortshagen and G. Mümken, Phys. Lett. A. 217, 126 (1996). DOI: 10.1016/0375-9601(96)00324-6

24. “A Radiometric Investigation of Low Pressure RF Sulfur Discharges,” N. D. Gibson, U. Kortshagen, and J. E. Lawler, J. Appl. Phys. 79, 7523 (1996). DOI: 10.1063/1.362424

23. “On the E-H-mode Transition in RF inductive discharges,” U. Kortshagen, N. D. Gibson and J. E. Lawler, J. Phys. D: Appl. Phys. 29, 1224 (1996). DOI: 10.1088/0022-3727/29/5/017

22. “Pulsed Discharges Produced by High Power Surface Waves,” A. Böhle, O. Ivanov, A. Kolisko, U. Kortshagen, H. Schlüter and A. Vikarev, J. Phys. D: Appl. Phys. 29, 369 (1996). DOI: 10.1088/0022-3727/29/2/013

21. Review article: “On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas,” U. Kortshagen, C. Busch and L.D. Tsendin, Plasma Sources Sci. Technol. 5, 1 (1996). DOI: 10.1088/0963-0252/5/1/001

20. “Ion Energy Distribution Functions in a Planar Inductively Coupled RF Discharge,” U. Kortshagen and M. Zethoff, Plasma Sources Sci. Technol. 4, 541 (1995). DOI: 10.1088/0963-0252/4/4/005

19. “On the Efficiency of the Electron Sheath Heating in Capacitively Coupled RF Discharges in the Weakly Collisional Regime,” U. Buddemeier, U. Kortshagen and I. Pukropski, Appl. Phys. Lett. 67, 191 (1995). DOI: 10.1063/1.114663

18. “Modelling of Microwave Discharges in the Presence of Plasma Resonances,” Yu. M. Aliev, A. V. Maximov, U. Kortshagen, H. Schlüter and A. Shivarova, Phys. Rev. E 51, 6091 (1995). DOI: 10.1103/PhysRevE.51.6091

17. “Experimental Investigation and Fast Two-dimensional Self-consistent Kinetic Modelling of Low-pressure Inductively Coupled RF discharges,” U. Kortshagen, I. Pukropski and L. D. Tsendin, Phys. Rev. E. 51, 6063 (1995). DOI: 10.1103/PhysRevE.51.6063

16. “Electron and Ion Distribution Functions in Microwave and RF Plasmas,” U. Kortshagen, Plasma Sources Sci. Technol. 4, 172 (1995). DOI: 10.1088/0963-0252/4/4/005

15. “Numerical Solution of the Spatially Inhomogeneous Boltzmann Equation and Verification of the Nonlocal Approach,” C. Busch and U. Kortshagen, Phys. Rev. E 51, 280 (1995). DOI: 10.1103/PhysRevE.51.280

14. “Fast Two-dimensional Self-consistent Kinetic Modelling of Low-pressure Inductively Coupled RF Discharges,” U. Kortshagen and L. D. Tsendin, Appl. Phys. Lett. 65, 1355 (1994). DOI: 10.1063/1.112050

13. “On the Spatial Variation of the Electron Distribution Function in a RF Inductively Coupled Plasma: Experimental and Theoretical Study,” U. Kortshagen, I. Pukropski and M. Zethoff, J. Appl. Phys. 76, 2048 (1994). DOI: 10.1063/1.357674

12. “On the Influence of Metastable Atoms on Surface Wave Produced Helium Plasmas,” J. Berndt, U. Kortshagen and H. Schlüter, J. Phys. D: Appl. Phys. 27 1470 (1994). DOI: 10.1088/0022-3727/27/7/019

11. “Experimental Evidence on the Nonlocality of the Electron Distribution Function,” U. Kortshagen, Phys. Rev. E 49, 4369 (1994). DOI: 10.1103/PhysRevE.49.4369

10. “On the Influence of Excited Atoms on the Electron Kinetics of a High Frequency Sustained Argon Plasma,” A. Böhle and U. Kortshagen, Plasma Sources Sci. Technol. 3, 80 (1994). DOI: 10.1088/0963-0252/4/4/005

9. “Electron Energy Distribution Functions in Microwave Discharges Created by Propagating Microwaves,” U. Kortshagen, A. Shivarova, E. Tatarova and D. Zamfirov, J. Phys. D: Appl. Phys. 27, 301 (1994). DOI: 10.1088/0022-3727/27/2/019

8. “A Nonlocal Kinetic Model Applied to Microwave Plasmas in Cylindrical Geometry,” U. Kortshagen, J. Phys. D: Appl. Phys. 26, 1691 (1993). DOI: 10.1088/0022-3727/26/10/021

7. “On the Influence of the Energy Transfer Efficiency on the Electron Energy Distribution Function in HF Sustained Rare Gas Plasmas: Experimental and Numerical Study,” U. Kortshagen, J. Phys. D: Appl. Phys. 26, 1230 (1993). DOI: 10.1088/0022-3727/26/8/012

6. “Analytical Study of the Influence of Electron-Electron Collisions on the High Energy Part of the Electron Energy Distribution Function,” U. Kortshagen, A.V. Maximov and H. Schlüter, Physica Scripta 46, 450 (1992). DOI: 10.1088/0031-8949/46/5/011

5. “Dispersion Characteristics and Radial Field Distribution of Surface Waves in the Collisional Regime,” M. Zethoff and U. Kortshagen, J. Phys. D: Appl. Phys. 25,1574 (1992). DOI: 10.1088/0022-3727/25/11/003

4. “On the Influence of Coulomb Collisions on the Electron Energy Distribution Function of Surface Wave Produced Argon Plasmas,” U. Kortshagen and H. Schlüter, J. Phys. D: Appl. Phys. 25, 644 (1992). DOI: 10.1088/0022-3727/25/4/010

3. “Determination of Electron Energy Distribution Functions in Surface Wave Produced Plasmas: II. Measurements,” U. Kortshagen and H. Schlüter, J. Phys. D: Appl. Phys. 24, 1585 (1991). DOI: 10.1088/0022-3727/25/4/010

2. “Determination of Electron Energy Distribution Functions in Surface Wave Produced Plasmas: I. Modelling,” U. Kortshagen, H. Schlüter and A. Shivarova, J. Phys. D: Appl. Phys. 24, 1571 (1991). DOI: 10.1088/0022-3727/24/9/009

1. “Experimental and Numerical Study of Electromagnetic Effects on Resonance Cones,” U. Kortshagen and A. Piel, Phys. Fluids B1, 538 (1989). DOI: 10.1063/1.859169